

Thermoelectric properties of $La_{1-x}Ca_{x}MO_{3-\delta}$ (x = 0.1 - 0.6, M = Co, Fe) derived by aqueous citrate precursors

Bréhault Antoine

Université Rennes 1 – IUT Saint Brieuc

EMPA Dübendorf

Réunion du Groupement de Recherche Thermoelectricité

Nancy 8th June 2009

Motivation

Objective:

• Determine the thermoelectric properties of perovskite type compounds with a general composition: $La_{1-x}Ca_xMO_{3-\delta}$ (M=Co, Fe) (x=0.1 - 0.6) derived by Soft Chemistry

Aim of the study:

• To find better materials for high-temperature thermoelectric oxide converters

The present perovskite structure is composed of La (at the A-site), Co (at the B-site) and O (at the X-site)

In following, two substitutions were studied: On A-site : La Ca On B-site : Co Fe

 $La_{1-x}Ca_{x}Co_{1-y}Fe_{y}O_{3}$ x = 0.1 - 0.6 y = 0.5 - 1

Materials Science & Technolog y

Calculation of tolerance factor for perovskite structures

$$t = \frac{(Ra + Rx)}{\sqrt{2} \times (Rb + Rx)}$$

A-site substitution (Ca) has an effect on the tolerance factor:

Composition	La _{0.9} Ca _{0.1} CoO ₃	La _{0.7} Ca _{0.3} CoO ₃	La _{0.4} Ca _{0.6} CoO ₃	
Tolerance factor	0.950	0.947	0.943	

B-site substitution (Fe) has an effect on the tolerance factor:

Tolerance factor 0.950 0.949 0.947	Composition	La _{0.9} Ca _{0.1} CoO ₃	La _{0.9} Ca _{0.1} Co _{0.5} Fe _{0.5} O ₃	La _{0.9} Ca _{0.1} FeO ₃
	Tolerance factor	0.950	0.949	0.947

Synthesis of the materials

Chimie douce methods were used to prepare a series of powders with a general composition $La_{1-x}Ca_{x}MO_{3-\delta}$ (x = 0.1 - 0.6, M = Co, Fe)

- <u>First step:</u>

Dissolution of stoichiometric amounts of metal nitrates together with citric acid in water

- <u>Second step:</u>

Heating and mixing of the solution to homogenize and polymerize the product

-<u>Third step:</u>

Drying in a furnace at 300°C to remove the solvent

- <u>Fourth step:</u>

Calcinations at ambient conditions to obtain the final composition

Characterization methods I

Characterization techniques for determination of crystallographic and thermoelectric properties of $La_{1-x}Ca_{x}MO_{3-\delta}$ (M = Co, Fe) (x = 0.1 - 0.6):

• Phase purity and crystallographic parameters were studied by X-ray Diffraction (XRD) coupled with Rietveld refinement (for $La_{0.9}Ca_{0.1}CoO_{3-\delta}$)

• Oxygen content measurement by Thermogravimetric Analysis (TGA) (for Ca substituted samples)

• Seebeck coefficient (S) and electrical conductivity (σ) measured by the four-contact method

Divergence

X-ray tube

Receiving

Detector

Detecto

Soller

Secondary Monochromator

conductivity (κ)

• Figure of Merit (ZT) was calculated from the above measurements of S, σ , κ

Experimental and simulated patterns for $La_{0.9}Ca_{0.1}CoO_{3-\delta}$

Examples for information provided by the Rietveld method:

peak position	Crystallographic parameters and dimension of the unit cell
peak intensity BBBBBB	Occupancy
peak broadening	Strain/crystallite size

Results of Rietveld refinement

- SG: P m -3 m
- Cell parameters (Å): a = 3.8328
- Volume (Å³): 56.25

Crystal structure of La_{0.9}Ca_{0.1}CoO₃

Atomic Coordinates, occupancy and equivalent isotropic displacement parameters for La_{0.9}Ca_{0.1}CoO₃

Name	×	У	Z	Ueq (Ų)	Wyckoff position	occupancy
La	0	0	0	0.013(5)	1a	0.899
Ca	0	0	0	0.056(2)	1a	0.101
Со	0.5	0.5	0.5	0.019(1)	1b	1
0	0	0.5	0.5	0.035(1)	3c	1

Results

TGA measurement for $La_{0.9}Ca_{0.1}CoO_{3-\delta}$

Reductions were performed between 300 K and 1470 K using 20 vol.% $\rm H_2/He$

According to the TGA results, the oxygen amount was calculated to be:

 $La_{0.9}Ca_{0.3}CoO_{2.89}$

$$La_{0.9}Ca_{0.6}CoO_{2.64}$$

Seebeck coefficient of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.7}Ca_{0.3}CoO_{3-\delta}$ and $La_{0.4}Ca_{0.6}CoO_{3-\delta}$ in the temperature range 300 - 1000 K.

Electrical resistivity of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.7}Ca_{0.3}CoO_{3-\delta}$ and $La_{0.4}Ca_{0.6}CoO_{3-\delta}$ in the temperature range 300 - 1020 K.

Materials Science & Technolog y

Thermal conductivities of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.7}Ca_{0.3}CoO_{3-\delta}$ and $La_{0.4}Ca_{0.6}CoO_{3-\delta}$ in the temperature range 300 - 1000 K.

Figure of merit

Influence of the A – site (Ca) substitution on the ZT. The ZT decreases with the increasing Ca content

Seebeck coefficient of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.9}Ca_{0.1}Fe_{0.5}Co_{0.5}O_{3-\delta}$ and $La_{0.9}Ca_{0.1}FeO_{3-\delta}$ in the temperature range 300 - 1250 K

Electrical resistivity of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.9}Ca_{0.1}Fe_{0.5}Co_{0.5}O_{3-\delta}$ and $La_{0.9}Ca_{0.1}FeO_{3-\delta}$ in the temperature range 300 - 1250 K.

Thermal conductivity of $La_{0.9}Ca_{0.1}CoO_{3-\delta}$, $La_{0.9}Ca_{0.1}Fe_{0.5}Co_{0.5}O_{3-\delta}$ and $La_{0.9}Ca_{0.1}FeO_{3-\delta}$ in the temperature range 300 - 1250 K

Figure of merit

By combining different materials, we could built a layered thermoelectric **Thiermoelectric device**

B - site (Fe) substitution effects the value of the figure of Merit

• A series of powders with different compositions were synthesized successfully by chimie douce methods

• Co substitution for Fe at the B site improve the thermoelectric activity (ZT) at high temperature, thus suggesting potential application in segmented TE legs

• Selective cationic substitution (La - Ca substitution) causes modification of the observed thermoelectric properties. The ZT decreases with increasing Ca content • The study showed that the combination of the different techniques: XRD (with Rietved refinement), thermal analysis and thermoelectric measurements are necessary to describe the chemical and physical properties of $La_{1-x}Ca_{x}MO_{3-\delta}$ (x = 0.1 - 0.6, M = Co, Fe)

Outlook:

• Study in more detail the influence of oxygen deficiency on the crystallographic structure, charge carrier concentration, and thermoelectric properties

Acknowledgements

Materials Science & Technolog y

Materials Science & Technolog y

Dr. Anke Weidenkaff Petr Tomes Dr. Petar Mandaliev

Laurent Le Gendre Ratiba Benzerga

...and the members of the Solid State Chemistry and Catalysis Group at EMPA

Thank you for your kind attention!