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Thermoelectric properties

Thermoelectric power generation

Seebeck effect: converts temperature differences in electric voltages

Seebeck coefficient S = ∆V
∆T
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Thermoelectric properties

Thermoelectric power generation

Seebeck effect: converts temperature differences in electric voltages

Efficiency (< 10 – 15%)

ηmax =
Thot − Tcold

Thot

√
1 + ZT − 1

√
1 + ZT + Tcold

Thot

Figure of merit:

ZT̄ =
(Sp − Sn)2T̄

[(ρpκp)1/2 + (ρnκn)1/2]2

Seebeck coefficient S = ∆V
∆T

Large ZT̄ are needed for high efficiency
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Thermoelectric properties

Electronic terms of the figure of merit

Objectives
Predict accurate values for thermoelectric properties
Deal with complexity (large cells, doping, nanostructuring, . . .)

⇒ Find efficient, cheap and environment-friendly new thermoelectrics!
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Thermoelectric properties

Boltzmann theory of transport

Within linear response:
ji = σijEj

The conductivity tensor is

σij =
1

4π3

∑
n

∫
τn,kvi(n,k)vj(n,k)

(
−∂f (n,k,T )

∂E(k)

)
dk

in terms of the group velocity and the relaxation time

The group velocity is given by the dispersion of the bands

Constant relaxation time approximation: τ
S is independent on τ
σ is proportional to τ
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Thermoelectric properties

Kohn-Sham band structure

Kohn-Sham (KS) equations[
−∇

2

2
+ vKS (r)

]
ϕKS

i (r) = εKS
i ϕKS

i (r)

ρ (r) =
occ.∑

i

|ϕKS
i (r) |2

It is common to interpret the solutions of the Kohn-Sham
equations as one-electron states
Often one obtains good band dispersions but band gaps are
systematically underestimated
Sometimes one gets bad band dispersions and band gaps!
This happens, e.g., when there are localized d or f states

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
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Reliable band structures

State-of-the-art of theory
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Standard DFT (LDA,GGAs): severe
underestimation of gaps, often good structural
properties, bad localized (d and f ) states
DFT + model U: corrects localization of d states,
usually better gaps, reliability depends too much
on the system
Hybrid functionals: good gaps (unfortunately
precision not systematic), excellent structural
properties, better localized states
GW: excellent band structures, excellent localized
states, self-consistent screening, hard to access
to total energies
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Reliable band structures

Comparative test: kesterite Cu2ZnSnS4
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SB, D. Kammerlander and M.A.L. Marques, APL 98, 241915 (2011)
C. Sevik and T. Çağin, PRB 82, 045202 (2010)
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Reliable band structures

Exploring new kesterites: Cu2ZnGe(S,Se)4
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scGW gap (HSE geometry) = 1.44 eV
scGW gap (GGA geometry) = 0.91 eV
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Reliable band structures

CuAlO2 delafossite
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Strong differences both in dispersion and energy gaps

J. Vidal, F. Trani, F. Bruneval, M.A.L. Marques, and S. Botti PRL 104, 136401 (2010)
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Disilicides

Quality of the density of states

X-ray photoelectron spectroscopy (XPS) measured in BaSi2
Calculated electronic density of states using GGA-PBE and the
hybrid functional HSE06

J. Flores-Livas, Ph.D. thesis, University of Lyon 1 (2012).
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Disilicides

Seebeck coefficient

GGA calculations
orthorhombic
BaSi2 agrees with
exp.
S underestimated
for SrSi2 (metallic
in GGA)
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Conclusions and perspectives

Conclusions and perspectives

In many cases the semi-classical theory of Boltzmann and the
relaxation time approximation are reliable, provided that the band
dispersions are good and the systems do not turn out metallic

Band-structure methods beyond ground-state DFT are well established
and necessary for systems with d-states close to the Fermi energy

Hybrid functionals are often a reasonable compromise

Open problems:
ab initio determination of the relaxation times
ab initio determination of the thermal conductivity
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Thanks!

Thanks to all collaborators at LPMCN

Miguel Marques, José Flores-Livas (theory)

Stéphane Pailhés, Régis Debord, Valentina Giordano
(experiments)

More information on our group home page:
http://www.tddft.org/bmg/

http://www.abinit.org http://www.yambo-code.org http://cms.mpi.univie.ac.at/vasp/
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