The thermoelectric power and the thermal conductivity of Cerium Kondo compounds : Theoretical models.

Bernard COQBLIN, LPS, Orsay, France

In collaboration with:

Anadi K. BHATTACHARJEE, LPS, Orsay, France

Veljko ZLATIC, Institute of Physics, Zagreb, Croatia

Zbigniew KLETOWSKI, Inst. Low Temp., Wroclaw, Poland

<u>Summary</u> :

- -The Kondo effect.
- The case of Cerium or other anomalous rareearth systems.
- The « high temperature » $(T>T_k)$ description of the thermopower of Kondo systems.
- The « low temperature » (T<T_k) description of the thermopower of Kondo systems.
- The thermal conductivity of Kondo systems.

Single-impurity Kondo model

Antiferromagnetic interaction between the local spin $S_f = \frac{1}{2}$ of the magnetic impurity and the local spin density s_c of conduction electrons : Kondo Hamiltonian: $H = H_{cond} + J_K s_c S_f$

Calculation of the magnetic resistivity:

 $\rho_{\text{mag}} = \mathbf{A}(\mathbf{J}_{\text{K}})^2 \left[\mathbf{1} + \mathbf{B} \mathbf{J}_{\text{K}} \mathbf{n}(\mathbf{E}_{\text{F}}) \operatorname{Log}(\mathbf{T}/\mathbf{D})\right]$

There is a minimum of the total resistivity for $J_K > 0$. A good agreement is obtained for many resistivity curves at « high temperatures » above the Kondo temperature T_k :

 $T > T_k = D \exp(-1/J_K n(E_F))$

The observed LogT behavior of the resistivity in many magnetic systems is really a « signature » of the Kondo effect. Examples : CeAl₂, CeAl₃, CeB₆, <u>La</u>Ce, <u>Au</u>Yb, TmS, PrSn₃... At low temperatures $(T < T_k)$, the Kondo impurities are well described by a Fermi liquid behavior :

- Electrical resistivity has a T² behavior

- Magnetic susceptibility tends to a huge constant χ_0 which behaves as $1/T_k.$

- The electronic specific heat constant γ has also a huge value which behaves as $1/T_k$.

Compound	Crystal Structure	CF (in K)	T_N (in K)	$\gamma(mJ/moleK^2)$
CeAl ₃	Hexagonal	60-90	-	1600
$CeCu_2Si_2$	Tetragonal	140-360	-	1000
CeCu ₆	Orthorhombic	100-240	-	1500
$CeRu_2Si_2$	Tetragonal	220	-	350
$CeInCu_2$	Cubic (Γ_7)	90	-	1200
$CeCu_4Ga$	Hexagonal	100	-	1800
$CeAl_2$	Cubic (Γ_7)	100	3.85	135
CeB_6	Cubic (Γ_8)	500	3.2	300
$CeRh_2Si_2$	Tetragonal	150	36	23
Ce_3Al_{11}	Orthorhombic	100	6.2*	120
CeIn ₃	Cubic (Γ_7)	100	10	140
$CeAl_2Ga_2$	Tetragonal	65-120	8.5	80
$CeCu_2$	Orthorhombic	200	3.5	82
$CeCu_2Ge_2$	Tetragonal	200	4.15	100
Ce_2Sn_5	Orthorhombic	70-155	2.9	380
YbCu ₄ Ag	Cubic	45	-	245
YbBiPt	Cubic	-	-	8000
$YbNi_2B_2C$	Tetragonal	40-200	-	530
$YbCu_2Si_2$	Tetragonal	216	-	135
YbNiAl	Hexagonal	35	2.9	350
$U(Pt_{0.95}Pd_{0.05})_3$	Hexagonal	-	6	500
UPd_2Al_3	Hexagonal	-	14.3	150
UNi_2Al_3	Hexagonal	-	4.6	120
$NpSn_3$	Cubic	-	9.5	240

 TABLE 1.
 Some examples of heavy fermion compounds

* Ferromagnetic T_c

Cerium and Ytterbium compounds

- Cerium : $4f^0 4f^1$
- Ytterbium : $4f^{14} 4f^{13}$
- Pr, Sm, Eu and Tm can be anomalous.
- Cerium → N(4f) < 1 : Intermediate valence.
 →N(4f) close to 1, almost 4f¹ (S=1/2, L=3, J=5/2) and Magnetic : Kondo effect.

<u>The KONDO effect in Cerium (or Ytterbium) systems</u> within the effective exchange (C.S.) Hamiltonian.

- - Ce : configuration $4f^1$: l=3, s=1/2, j=5/2 (M=j_z = -5/2, -3/2 ... +5/2) (The j=7/2 multiplet is widely separated from the j=5/2 multiplet)
- - Only the conduction-electron partial-wave states with same l, s, j and M values are "mixed" with localized states.
- - The crystal-field effect splits the (2j+1)-degenerate 4f level into : either one doublet Γ_7 and one quartet Γ_8 or three doublets.
- - The exchange integral J_K is given by :

 $J_{K} = |V_{kf}|^{2}/|E_{0}|$

• - The parameters of the model are J_K and the crystalline field (CF) splitting Δ .

The electrical resistivity (B. Cornut and B. Coqblin, Phys. Rev. **B5**, 4541 (1972)), the thermoelectric power (A. K. Bhattacharjee and B. Coqblin, Phys. Rev. B13, 3441 (1976)) and the thermal conductivity (A. K. Bhattacharjee and B. Coqblin, Phys. Rev. B38, 338 (1988)) have been computed in the model which describes both the Kondo effect and the crystalline field effect, within the perturbation theory in third order in the exchange integral J_{κ} , in the so-called "high temperature" limit, i.e. T>T_k, where T_k is the Kondo temperature.

But, in many Kondo systems, T_k can be very small, for example of order a fraction of 1K to some °K and the crystalline field splitting Δ is generally much larger than T_k .

CeAl₃

A.K Bhattacharjee and B. Coqblin, Phys. Rev B 13, 3441 (1976).

The thermoelectric power S is given by :

$$S = -\frac{1}{eT} \left[\int_{-\infty}^{\infty} \epsilon_k \left(-\frac{\partial f_k}{\partial \epsilon_k} \right) \tau_k d\epsilon_k \right]$$
$$\int_{-\infty}^{\infty} \left(-\frac{\partial f_k}{\partial \epsilon_k} \right) \tau_k d\epsilon_k$$

with e > 0.

So, the total resistivity ρ is given by:

$$\frac{1}{\rho} = \sigma = \frac{e^2}{3\pi^2 m} \int_0^\infty k^3 \left(-\frac{\partial f_k}{\partial \epsilon_k}\right) \tau_k d\epsilon_k$$

The value of τ_k is given by:

$$\frac{1}{\tau_{k}} = \frac{mkv_{0}c}{\pi\hbar^{3}(2j+1)} (R_{k} + S_{k}) ,$$

$$\begin{split} R_{k} &= \sum_{M} \left(|V_{MM}|^{2} - 2V_{MM} J_{MM} \langle n_{M} \rangle \right) \\ &+ \sum_{M,M'} \frac{|J_{MM'}|^{2} \langle n_{M'} \rangle}{1 - f_{k} (1 - e^{\beta(E_{M} - E_{M'})})}, \\ S_{k} &= 2 \sum_{M,M'} \sum_{M} J_{MM'} J_{mM} J_{mM'} \langle n_{M'} \rangle \\ &\times (1 - \delta_{mM} \delta_{mM'}) \frac{g(\epsilon_{k} + E_{m} - E_{M})}{1 - f_{k} (1 - e^{\beta(E_{M} - E_{M'})})} \\ &- 2 \sum_{M} \sum_{M} (1 - \delta_{mM}) V_{MM} |J_{MM}|^{2} \\ &\times (\langle n_{M} \rangle - \langle n_{m} \rangle) g(\epsilon_{k} + E_{m} - E_{M}), \end{split}$$

where R_k is the second-order term, S_k is the third-order term, *m* is the mass of the conduction electrons, *k* is their wave number, v_0 is the sample volume, *c* is the impurity concentration

FIG. 6. Comparison between experiment and theory for $Ce_{1-x} La_x Al_3$. Experimental points show the differences between the Seebeck coefficients of $Ce_{1-x} La_x Al_3$ and of LaAl₃ for x=0.99 (0), 0.90 (Δ), 0.50 (\Box), 0 (x).

Thermoelectric power Q of CeAl_3 over almost 4 decades of temperatures.

Characteristic thermopower behaviours of metallic Cebased systems.

Fig. 1. Thermopower of the $Ce_xLa_{1-x}Cu_{2.05}Si_2$ alloy system. *Inset*: Magnetic contribution to the resistivity, ρ_{mag} .

Fig. 1. Absolute thermopower of $CeAu_2Si_2$ and $CePd_2Si_2$

Fig. 2. Absolute thermopower of CeRh₂Si₂ and CeRu₂Si₂. The arrow indicated the ordering temperature T_N

V. Zlatic, B. Horvatic, I. Milat, B. Coqblin, G. Czycholl and C. Grenzebach, Phys. Rev B 68, 104432 (2003).

At low temperatures (T<T_k< Δ), the Cerium Kondo impurity is described by the Fermi liquid model for the doublet ground state . Within the Single-impurity Anderson model, the f-electron spectral function presents a peak at the Fermi energy (« Kondo resonance »), which depends on the c-f hybridization V_{kf} and the Coulomb integral U. We use a modified perturbation theory which interpolates between the two limiting cases of V_{kf} and U tending to zero and which allows to have a good description of the Kondo resonance. Then we compute the thermoelectric power which presents a positive (negative) peak at a temperature roughly equal to T_k/2 for Cerium (Ytterbium) compounds.

Increasing pressure : $I \rightarrow II$

I : $n_f=0.98$, $V_0=-0.2 \text{ eV}$ II : $n_f=0.95$, $V_0=-0.35 \text{ eV}$

Maxima at $T_k/2$ and $\Delta/3$

H. Wilhelm, D. Jaccard, V. Zlatic, R. Monnier, B. Delley and B. Coqblin, J. Phys. : Condens. Matter **17**, S823 (2005).

<u>Theoretical model to account for the high pressure</u> <u>transport properties of CeRu₂Ge₂:</u>

Anderson Model with a semi-elliptic conduction band of W = 4 eV, a ground state level at $E_f = -$ 0.7 eV and a crystal-field splitting $\Delta = 0.07$ eV.

The c-f hybridization parameter V_{kf} is considered here to increase with pressure. The parameter Γ = $\pi (V_{kf})^2/W$ increases with pressure from a value of Γ = 0.06 eV at normal pressure up to a value of order 0.2 eV at 15 GPa.

Theory : Changing the width of the f-state (with pressure)

Low pressure

High pressure

 $CeRu_2Ge_2$ at low pressure.

CeRu Ge at high pressure.

Theory

Experiment

A.K Bhattacharjee and B. Coqblin, Phys. Rev B 38, 338 (1988).

Z. Kletowski and B. Coqblin, Solid State Communications 135, 711 (2005)

THE THERMAL CONDUCTIVITY of CERIUM KONDO COMPOUNDS

The thermal « resistivity » W, equal to the inverse of the thermal conductivity K, can be written as :

 $\mathbf{K}^{-1} = \mathbf{W} = \mathbf{W}_{\text{mag}} + \mathbf{W}_{\text{ph}}$

where the second term is taken here as the thermal resistivity of the equivalent nonmagnetic (such as La) compound.

For T>T_k, the Kondo contribution T.W_{mag} behaves as Log T.

Plot of W_{mag}.T versus LogT. The numbers correspond to : 1 for CeAl₂, 2 for CeCu₂, 3 for CeCu₅, 4 for CeCu₄Al, 5 for PrSn₃, 6 for TmGa₃, 7 for TmIn₃ and 8 for YbCu₄Ag.

First analyzed curves of CeCu₂, CeCu₅
and YbCu₄Ag by E. Bauer, E. Gratz,
G. Hutflesz, A. K. Bhattacharjee and
B. Coqblin, J.M.M.M. 108, 159 (1992) and Physica B 186-188, 494 (1993).

Plot of W_{mag}.T versus LogT for CeCu₂. (Exp. Ratio "highT/lowT" = 6.4 and Theoretical Ratio = 35/3)

CeRuSi + H (B. Chevalier et al.)

Fig.9. Temperature dependence of the thermoelectric power of CeRuSi, LaRuSi and their hydrides.

CONCLUSIONS

- The Thermopower of Ce (Yb) compounds has generally a positive (negative) peak at roughly $\Delta/3$ and another one at $T_k/2$. The width of the Kondo peak is taken as increasing with pressure in CeRu₂Ge₂ compound.

- The analysis of the thermal conductivity is generally difficult, but W_{mag} .T and ρ_m have a similar behavior in LogT above T_k in strongly Kondo systems.

- The « figure of merit » given by :

 $ZT = S^2.T/K\rho$

can be large in heavy fermion compounds, because S and 1/K are large, but on the contrary ρ is also large.