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Film specifications

high quality films

well-known thickness

high density

large grains

smooth surfaces

sharp interfaces - no interdiffusion

no oxygen contamination

Pulsed laser deposition (PLD) for the synthesis of thermoelectric films

Stoichiometry of target restored
Lower deposition temperature



Experimental: pulsed laser deposition set-up

fast opening door
multiple target holder 

rotation: 9 r.p.m.

30°

molecular pump

gauge 

gas inlet

ionic pump 

heating lamp

thermocouple feedthroughelectrical feedthrough

substrate 
heater & holder

focusing lensNd : YAG LASER 
(5 Hz, 10 ns)  
λ = 532 nm

Motorized tables allowing
the laser beam scanning 

along X,Y,Z

Target 
PbTe

Substrate

10-7-10-8 
mbar



Experimental: pulsed laser deposition set-up

Nd:YAG laser

Focusing 
lens

x,y,z motorized
tables

Laser beam



Adjustable parameters

Laser

Wavelength: 266, 532, 1064 nm (absorption)
Frequency: 2, 5 or 10 Hz (overlapping)
Output energy/focalisataion (fluence)
Number of shots (thickness)

Chamber
Vacuum (static or dynamic)
Gas (static or dynamic)

Target
Polycrystalline self-made ingots
Diameter (12-19 mm)
Rotation speed

Substrate
Nature (amorphous, oriented)
Temperature (20-500°C)
Target-substrate distance (2-5 cm)

Scanning Rate



Preparation of skutterudite thin films

AIM: Synthesis of high quality n- and p-type skutterudites films for their use 
in thermoelectric micro-devices. Study of the influence of many deposition 
parameters to achieve a single phase film having the skutterudite structure.

MATERIAL: CaxCo4Sb12 (n-type), CexFe3.5Co0.5Sb12 (p-type)

PARAMETER STUDIED: wavelength: 266, 355 or 532 nm, density of
energy: 2-5 J/cm2, deposition temperature: 25-300°C, 

SUBSTRATE: SiO2(20 nm)/Si(100), quartz, glass



Influence of the deposition temperature (532 nm)

300°C: textured CoSb3 + ?
240°C: CoSb3 single phase
220°C: CoSb3 + ?
25°C  : amorphous
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300°C

240°C
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Thickness: 670 nm
Grain: > 500 nm
RMS = 16.1 nm

Thickness: 520 nm
Grain: ~ 100 nm
RMS = 38.4 nm

Decrease of film thickness and grain size 
when Ts ↑



Thickness: 70 nm
Grain size: < 80 nm
RMS: 12.7 nm
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Influence of the deposition temperature (266 nm) 
X: CoSb3, *: CoSb2 ?, #: Sb

Comparison with 532 nm:

• No achievement of the skutterudite phase, whatever Ts or fluence (≠ from the
literature)

• No reduction of the droplet density
• Deposition rate about 10 times lower



Influence of wavelength and substrate

/ 240°C
→ The nature of the substrate is 
not significative.

→ The deposition temperature 
differs strongly according to the 
wavelength (150°C at 266 nm 
(UV) and 240°C at 532 nm 
(visible)). 



Topography of n-type skutterudite films (AFM)

Quartz substrate: 
influence of wavelength

→ The films exhibit a low 
amount of droplets, especially 
when made from 532 nm, and 
are smooth (RMS ~ 10 nm).

→ The surface shows a well 
defined morphology.

→ Grain sizes are about 100 
to 200 nm.

→ RMS does not depend on 
substrate nature.

Quartz substrate: 
influence of thickness

50 000 pulses:
influence of substrate



Electrical resistivity of skutterudite films

n-type p-type
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→ Both n- and p-type materials show typical behaviours of semi-conductors.

→ The values  of the p-type film are much lower than those of the n-type film,
in agreement with the differences observed for the bulk materials.



Carrier mobility of skutterudite films 
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→ The films exhibit the same type of conductivity as the target materials they 
are made from.

→ The preliminary results show that the carrier mobilities are as high as in 
bulk materials for the p-type films and much smaller than in bulk materials for 
the n-type films.



Skutterudite films: conclusions

→ The synthesis of skutterudite films revealed to be particularly sensitive to quite 
all deposition parameters we tested, but feasability to make both n- and p-type 
materials by PLD has been proven.

→ The skutterudite phase could be achieved for the first time with the 532 nm 
wavelength, for a given density of energy (4 J/cm2), deposition temperature 
(240°C), and base pressure (10-4 mbar). These films exhibit less droplets and a 
smoother surface than films prepared in the UV range (for equivalent film 
thickness), contrarily to many materials.

→ The first transport property measurements showed that the films behaves 
similarly with temperature than the bulk materials.

Further work:

→ Try to realise a thermoelectric micro-generator made from both the n and p-
type skutterudites synthesized.



Nanostuctured bulk materials : Aim

Nano-structured bulk materials with enhanced thermoelectric performance

• size as small as possible
• narrow particle size distribution
• composition close to that of the starting material

High yield production of nano-particles of thermoelectric materials

Pulsed laser ablation in a liquid media 
(simple, versatile, no chemical reagents)

Materials: n- and p-type (Bi1-xSbx)2(Te1-ySey)3

Physico-chemical characterization of the produced powders



Pulsed laser ablation in a liquid media: principle

Focusing lens

Laser beam

Glass vessel

Liquid media

target

Nano-particles



Experimental set-up

Nd:YAG laser

Magnetic strirring
(agglomeration avoiding,
less particles-beam interactions)

x,y motorized tables (crenel-like scanning)

Laser beam

Focusing 
lens

Target 
+

Liquid



Experimental parameters

laser

532 or 1064 nm
2, 5 or 10 Hz
1 - 20 J/cm2

1 - 36 000 shots 

target

polycrystalline
n (Bi0.95Sb0.05)2(Te0.95Se0.05)3

p (Bi0.2Sb0.8)2Te3

liquid
water, ethanol, n-heptane
1 or 2 cm height 

scanning rate 0.5 or 2 mm/s



Yield optimization: influence of the laser frequency
n-type, 532 nm, water, 2.6 J/cm2, 1 hour
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Strong influence of the laser frequency

2 Hz:   no overlapping between 2 consecutive shots
5 Hz:   50 % overlapping → 5 Hz, 2 mm/s
10 Hz:  80 % overlapping (2 mm/s)
10 Hz:  90 % overlapping (0.5 mm/s)

Saturation limit: ~ 3 mg → 70 µg/cm3



Yield optimization: influence of the fluence
1064 nm, water, 5 Hz
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Cristallographic structure: influence of the fluence
1064 nm, 18000 shots, 2 mm/s
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Chemical composition (EPMA)
1064 nm, 18000 shots, 2 mm/s

Bi Te Sb Se

n-target 36.5 59.4 2.2 1.9

n-powders
water, 100 mJ

38.2 58.2 1.8 1.8

n-powders
water, 300 mJ

38.7 57.8 1.6 1.9

p-target 7.6 60.7 31.7 -

p-powders
water, 60 mJ

8.0 60.8 31.3
-



Morphology
1064 nm, 18000 shots, 60 mJ, 2 mm/s

n-type p-type

Mean particle size

TEM: 28 nm (200 shots)

XRD: 35 nm (18000 shots)



Summary
Proof-of-principle: pulsed laser ablation in a liquid media is efficient to 
synthesize nano-powders of complex materials.

n-type (Bi0.95Sb0.05)2(Te0.95Se0.05)3 can be synthesized  in water.

p-type (Bi0.2Sb0.8)2Te3 is more difficult to synthesize.
(different absorption coefficient, different interaction with the solvent).

Each parameter studied has an influence (tailor as a function of we want):
- wavelength → saturation limit of particles in the solution, size, composition
- solvent → height: yield, 

nature: crystallographic phase, size, agglomeration aptitude
- energy → yield, size, crystallographic phase

Problems: low ablation yield, no p-type, ‘large’ particle size distribution 
(laser-powder interaction ?), inflammability and recuperation of the solvent,
oxidation.



New process diagram

sieving
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New experimental

Guiding beam for adjusting the laser 
beam position (excentered position)

Initial powders in distilled water 
(small diameter vessel, 10 Hz)

→ 3 magnets



Influence of the number of shots: sedimentation test
p-type, 532 nm, 300 mJ, 30 min test

a c d eb

a: initial powders

b: 9 000 shots

c: 18 000 shots

d: 27 000 shots

e: 36 000 shots

Duration of sedimentation increases as a function of the number of shots:

→ the weight and therefore the size of the generated particles become lower,

→ more and more initial particles are broken. 



Effect of the laser beam on the particles morphology
p-type, 532 nm, 300 mJ, 36 000 shots

After laser treatment: nano-
powders of size less than 30 nm

Initial sieved powders: diameter is in the 
range of 1- 17 µm and  2.5 µm in 
average



Influence of the composition on the particle size
532 nm, 200 mJ, 36 000 shots

20 5020 50

100 100 100 50

n-type nano-powders p-type nano-powders



5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

 

 

N
um

be
r o

f p
ar

tic
le

s

Diameter (nm)

Influence of the composition on the particle size
532 nm, 200 mJ, 36 000 shots

p-type:  diameter in the  range of  2.5 – 47.5 nm and 10 nm in average
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n-type:  diameter in the  range of  2.5- 22.5 nm and 6 nm in average

0 10 20 30 40 50
0

20

40

60

80

100

 

 

%
 c

um
m

ul
at

iv
e 

le
ss

 th
an

 s
iz

e

Particle size (nm)



Crystallographic structure
532 nm,  36 000 shots

P type nano- powderN type nano-powder

→ no significant difference as a function of output energy for both type

→ n-type: single phase

→ p-type: unknown phase, disappearing after annealing at 180°C
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Conclusion

By comparison to the production of nano-powders from a bulk target, the 
use of initial micro-sized powders leads to:

→ smaller particles, 

→ improved production yield,

→ improved crystalline quality of the p-type nano-powders (annealing),

→ no inflammability problem (use of water).



Now
Acrylic box with powder circulation in water 

Use of a new fabrication cell to produce nano-powders with high yield to make:

• nano-structured bulk materials (SPS) to test the thermoelectric performance 
(electrical and thermal conductivities, thermopower, →improvment?)

• thin films directly from the solution by electrophoresis and test their 
thermoelectric performance (use in micro-devices: µ-generators or µ-refrigerators)



PbTe-Bi nano-composites: 
influence of bi-layers number (BaF2, 150°C)

→ Smoothening of the surface as the number of bi-layers increases
→ Obtaining of the (111) texture



Transport properties of PbTe films and Bi/PbTe 
nano-composites
(Ts = 150°C, F = 4 J/cm2)

Resistivity
[µΩ.m]

Seebeck
[µV.K-1]

Power factor
[µW.m-1.K-2]

PbTe/BaF2 45 - 247 1355
(n=4.9x1017 cm-3)

20 (PbTe/Bi/BaF2) 32 - 223 1554
(n=2.3x1018 cm-3)

PbTe/glass 14 - 156 1760
(n=2.0x1020cm-3)

20(PbTe/Bi/glass) 8 - 118 1780



Thermal cycling of PbTe films and 
Bi/PbTe nanocomposites
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The PbTe films do
not withstand 
thermal cycling ...
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…but the Bi/PbTe 
nanocomposites do !
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