Preparation and characterization of nanostructured thermoelectric materials Nancy-Université

QuickTime™ et un décompresseur TIFF (non compressé

> Laboratoire de Physique des Matériaux, UMR 7556 Ecole Nationale Supérieure des Mines de Nancy, France

> > A. Dauscher, B. Lenoir, D. Colceag, V. Kosalathip, C. Candolfi, V. Da Ros

Ca_xCo₄Sb₁₂/substrate films , BiSbTe nano-powders Bi/PbTe/substrate films

Film specifications

- high quality films
- well-known thickness
- high density
- large grains
- smooth surfaces
- sharp interfaces no interdiffusion
- no oxygen contamination

Pulsed laser deposition (PLD) for the synthesis of thermoelectric films

Stoichiometry of target restored Lower deposition temperature

Experimental: pulsed laser deposition set-up

Experimental: pulsed laser deposition set-up

Adjustable parameters

Laser	Wavelength: 266, 532, 1064 nm (absorption) Frequency: 2, 5 or 10 Hz (overlapping) Output energy/focalisataion (fluence) Number of shots (thickness)		
Chamber	Vacuum (static or <mark>dynamic</mark>) Gas (static or dynamic)		
Target	Polycrystalline self-made ingots Diameter (12-19 mm) Rotation speed		
Substrate	Nature (amorphous, oriented) Temperature (20-500°C) Target-substrate distance (2-5 cm)		
Scanning	Rate		

Preparation of skutterudite thin films

AIM: Synthesis of high quality *n*- and *p*-type skutterudites films for their use in thermoelectric micro-devices. Study of the influence of many deposition parameters to achieve a single phase film having the skutterudite structure.

MATERIAL: $Ca_xCo_4Sb_{12}$ (*n*-type), $Ce_xFe_{3.5}Co_{0.5}Sb_{12}$ (*p*-type)

PARAMETER STUDIED: wavelength: 266, 355 or 532 nm, density of energy: 2-5 J/cm², deposition temperature: 25-300°C,

SUBSTRATE: SiO₂(20 nm)/Si(100), quartz, glass

Influence of the deposition temperature (532 nm)

X: CoSb₃, *****: CoSb₂ ?, **#**: Sb

300°C: textured CoSb₃ + ? 240°C: CoSb₃ single phase 220°C: CoSb₃ + ? 25°C : amorphous

Thickness: 520 nm Grain: ~ 100 nm RMS = 38.4 nm

Thickness: 670 nm Grain: > 500 nm RMS = 16.1 nm

Decrease of film thickness and grain size when Ts \uparrow

Influence of the deposition temperature (266 nm)

X: CoSb₃, *****: CoSb₂ ?, **#**: Sb

Thickness: 70 nm Grain size: < 80 nm RMS: 12.7 nm

Comparison with 532 nm:

- No achievement of the skutterudite phase, whatever T_s or fluence (≠ from the literature)
- No reduction of the droplet density
- Deposition rate about 10 times lower

Influence of wavelength and substrate

\rightarrow The nature of the substrate is not significative.

→ The deposition temperature differs strongly according to the wavelength (150°C at 266 nm (UV) and 240°C at 532 nm (visible)).

Topography of n-type skutterudite films (AFM)

Quartz substrate: influence of thickness 50 000 pulses: influence of substrate Quartz substrate: influence of wavelength

 \rightarrow The films exhibit a low amount of droplets, especially when made from 532 nm, and are smooth (RMS ~ 10 nm).

 \rightarrow The surface shows a well defined morphology.

 \rightarrow Grain sizes are about 100 to 200 nm.

 \rightarrow RMS does not depend on substrate nature.

Electrical resistivity of skutterudite films

 \rightarrow Both *n*- and *p*-type materials show typical behaviours of semi-conductors.

 \rightarrow The values of the *p*-type film are much lower than those of the *n*-type film, in agreement with the differences observed for the bulk materials.

Carrier mobility of skutterudite films

 \rightarrow The films exhibit the same type of conductivity as the target materials they are made from.

 \rightarrow The preliminary results show that the carrier mobilities are as high as in bulk materials for the *p*-type films and much smaller than in bulk materials for the *n*-type films.

Skutterudite films: conclusions

 \rightarrow The synthesis of skutterudite films revealed to be particularly sensitive to quite all deposition parameters we tested, but feasability to make both *n*- and *p*-type materials by PLD has been proven.

→ The skutterudite phase could be achieved for the first time with the 532 nm wavelength, for a given density of energy (4 J/cm²), deposition temperature (240°C), and base pressure (10⁻⁴ mbar). These films exhibit less droplets and a smoother surface than films prepared in the UV range (for equivalent film thickness), contrarily to many materials.

 \rightarrow The first transport property measurements showed that the films behaves similarly with temperature than the bulk materials.

Further work:

 \rightarrow Try to realise a thermoelectric micro-generator made from both the *n* and *p*-type skutterudites synthesized.

Nanostuctured bulk materials : Aim

Nano-structured bulk materials with enhanced thermoelectric performance

High yield production of nano-particles of thermoelectric materials

- size as small as possible
- narrow particle size distribution
- composition close to that of the starting material

Pulsed laser ablation in a liquid media (simple, versatile, no chemical reagents)

Materials: *n*- and *p*-type $(Bi_{1-x}Sb_x)_2(Te_{1-y}Se_y)_3$

Physico-chemical characterization of the produced powders

Pulsed laser ablation in a liquid media: principle

Experimental set-up

Magnetic strirring x,y motorized tables (crenel-like scanning) (agglomeration avoiding, less particles-beam interactions)

Experimental parameters

	532 or 1064 nm		
laser	2, 5 or 10 Hz		
	1 - 20 J/cm ²		
	1 - 36 000 shots		
	polycrystalline		
target	<i>n</i> (Bi _{0.95} Sb _{0.05}) ₂ (Te _{0.95} Se _{0.05}) ₃		
	$p (Bi_{0.2}Sb_{0.8})_{2}Te_{3}$		
	water, ethanol, n-heptane		
liquid	1 or 2 cm height		
scanning rate	0.5 or 2 mm/s		

Yield optimization: influence of the laser frequency *n*-type, 532 nm, water, 2.6 J/cm², 1 hour

Strong influence of the laser frequency

- 2 Hz: no overlapping between 2 consecutive shots
- 5 Hz: 50 % overlapping
- 10 Hz: 80 % overlapping (2 mm/s)
- 10 Hz: 90 % overlapping (0.5 mm/s)

Saturation limit: ~ 3 mg \rightarrow 70 μ g/cm³

 \rightarrow 5 Hz, 2 mm/s

Yield optimization: influence of the fluence 1064 nm, water, 5 Hz

Density of energy \uparrow mass ablated \uparrow (limitation 300 mJ) Saturation limit: ~ 10 mg \rightarrow 220 μ g/cm³ \rightarrow IR

p-type ≠ *n*-type

Cristallographic structure: influence of the fluence 1064 nm, 18000 shots, 2 mm/s

1,0,10 2,0,5 0. T. ntensity (AU) 300 mJ 200 mJ 100 mJ 60 mJ target 50 20 30 40 60 70 **2θ**()

n-type

Achievement of the same phase as the target

Achievement of a single phase but different from the target

or Presence of multiple phases

Chemical composition (EPMA) 1064 nm, 18000 shots, 2 mm/s

	Bi	Те	Sb	Se
<i>n</i> -target	36.5	59.4	2.2	1.9
<i>n</i> -powders water, 100 mJ	38.2	58.2	1.8	1.8
<i>n</i> -powders water, 300 mJ	38.7	57.8	1.6	1.9
<i>p</i> -target	7.6	60.7	31.7	-
<i>p</i> -powders water, 60 mJ	8.0	60.8	31.3	-

Morphology 1064 nm, 18000 shots, 60 mJ, 2 mm/s

n-type

p-type

Mean particle size TEM: 28 nm (200 shots) XRD: 35 nm (18000 shots)

Summary

Proof-of-principle: pulsed laser ablation in a liquid media is efficient to synthesize nano-powders of complex materials.

n-type $(Bi_{0.95}Sb_{0.05})_2(Te_{0.95}Se_{0.05})_3$ can be synthesized in water.

p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ is more difficult to synthesize. (different absorption coefficient, different interaction with the solvent).

Each parameter studied has an influence (tailor as a function of we want):

- wavelength \rightarrow saturation limit of particles in the solution, size, composition

- solvent \rightarrow height: yield,

nature: crystallographic phase, size, agglomeration aptitude

- energy \rightarrow yield, size, crystallographic phase

Problems: low ablation yield, no p-type, 'large' particle size distribution (laser-powder interaction ?), inflammability and recuperation of the solvent, oxidation.

New process diagram

New experimental

Initial powders in distilled water (small diameter vessel, 10 Hz) \rightarrow 3 magnets Guiding beam for adjusting the laser beam position (excentered position)

Influence of the number of shots: sedimentation test p-type, 532 nm, 300 mJ, 30 min test

a: initial powders
b: 9 000 shots
c: 18 000 shots
d: 27 000 shots
e: 36 000 shots

Duration of sedimentation increases as a function of the number of shots:

- \rightarrow the weight and therefore the size of the generated particles become lower,
- \rightarrow more and more initial particles are broken.

Effect of the laser beam on the particles morphology p-type, 532 nm, 300 mJ, 36 000 shots

Initial sieved powders: diameter is in the range of 1- 17 µm and 2.5 µm in average

After laser treatment: nanopowders of size less than 30 nm

Influence of the composition on the particle size 532 nm, 200 mJ, 36 000 shots

n-type nano-powders

p-type nano-powders

Influence of the composition on the particle size 532 nm, 200 mJ, 36 000 shots

Crystallographic structure 532 nm, 36 000 shots

- \rightarrow no significant difference as a function of output energy for both type
- \rightarrow *n*-type: single phase
- \rightarrow *p*-type: unknown phase, disappearing after annealing at 180°C

Conclusion

By comparison to the production of nano-powders from a bulk target, the use of initial micro-sized powders leads to:

- \rightarrow smaller particles,
- \rightarrow improved production yield,
- \rightarrow improved crystalline quality of the p-type nano-powders (annealing),
- \rightarrow no inflammability problem (use of water).

Now

Acrylic box with powder circulation in water

Use of a new fabrication cell to produce nano-powders with high yield to make:

• nano-structured bulk materials (SPS) to test the thermoelectric performance (electrical and thermal conductivities, thermopower, \rightarrow improvment?)

• thin films directly from the solution by electrophoresis and test their thermoelectric performance (use in micro-devices: μ -generators or μ -refrigerators)

PbTe-Bi nano-composites: influence of bi-layers number (BaF₂, 150°C)

 \rightarrow Smoothening of the surface as the number of bi-layers increases \rightarrow Obtaining of the (111) texture

Transport properties of PbTe films and Bi/PbTe nano-composites $(T_s = 150^{\circ}C, F = 4 J/cm^2)$

	Resistivity [μΩ.m]	Seebeck [µV.K ⁻¹]	Power factor [μW.m ⁻¹ .K ⁻²]
PbTe/BaF ₂	45	- 247	1355 (n=4.9x10 ¹⁷ cm ⁻³)
20 (PbTe/Bi/BaF ₂)	32	- 223	1554 (n=2.3x10 ¹⁸ cm ⁻³)
PbTe/glass	14	- 156	1760 (n=2.0x10 ²⁰ cm ⁻³)
20(PbTe/Bi/glass)	8	- 118	1780

Thermal cycling of PbTe films and Bi/PbTe nanocomposites

...but the Bi/PbTe nanocomposites do !

