

Département des Technologies des NanoMatériaux (DTNM) Laboratoire des Composants pour la Récupération d'Énergie (LCRE)

Etude sur le dimensionnement des convertisseurs thermoélectriques en couches minces

Guillaume Savelli, Marc Plissonnier

GDR Thermoélectricité - 08/07/2009

Sommaire

- 1 Thermoélectricité : une problématique à 3 niveaux
- 2 Dimensionnement d'un système thermoélectrique
- 3 Optimisation des performances
- 4 Conclusions

Sommaire

1 - Thermoélectricité : une problématique à 3 niveaux

- 2 Dimensionnement d'un système thermoélectrique
- **3 Optimisation des performances**
- 4 Conclusions

1 La thermoélectricité, une problématique à 3 niveaux...

 \rightarrow ces 3 domaines ne sont pas indépendants et sont à traiter simultanément !!

ten

1 L'environnement... dicté par les applications...

- Le milieu dans lequel sera introduit le module, et donc les matériaux, dépend des applications pour lesquelles il sera conçu !
- Les applications des modules TE couches minces :
 - → applications majeures : les capteurs : grâce à une très bonne sensibilité en tension !!

GDR Thermoélectricité - 08/07/2009

Laboration d'Énergie 5

ceol

Sb - bismuth (n) / antimoine (p) 2005 $(e = qq \mu m)$ - SiGe (n et p) 2006 $(e = qq \mu m)$ SiGe poly 2007 - Superréseaux Si/SiGe (n et p) $(\mathbf{e}_{monocouche} = 4 - 20 nm)$ SR Si/SiGe mono - Quantum dots Ge sur matrice Si 2008 $(e = 2 - 40 nm / \emptyset = 20 - 700 nm)$ CECI LITEN 1µm Mag = 5000 KX EHT = 3.00 KV WD = 3 mm - Superréseaux de quantum dots Ge 2009 - Quantum dots siliciures sur matrice Si QD Ge - Superréseaux de quantum dots de siliciures 2010 (MoSi₂, TiSi₂...) 1: Heigh GDR Thermoélectricité - 08/07/2009

æ

10.0 µ

1 Les matériaux thermoélectriques : propriétés

- définition du maximum de rendement de conversion :

liten

GDR Thermoélectricité - 08/07/2009

1 Les matériaux TE : pourquoi les nanomatériaux ?

Augmentation du ZT par les nanomatériaux

 $ZT_m = \frac{\sigma \times S^2}{\lambda} T_m$

 \rightarrow augmentation du facteur de puissance

facteur de puissance σs² élevé par une augmentation de la densité d'états des électrons (amplification du confinement quantique des électrons) au niveau de Fermi

 \rightarrow diminution de la conductivité thermique

réduction de
$$\lambda = \lambda_{e_{-}} + \lambda_{ph}$$

- \rightarrow diffusion des phonons :
 - avec impuretés
 - aux joints de grains
 - par effet de taille

liten

2 1 Les modules thermoélectriques

modules 2D Bi / Sb

substrat verre 100mm motifs : lignes de \neq largeur N = 100 à 160 jonctions A_{te} = 1 cm² *G. Savelli et al., ICT 2006, Vienna, Austria*

• modules 3D Bi / Sb

Ν

ten

Performances en tension : plusieurs centaines de mV pour $\Delta T \approx 100 K$

Performances en puissance : qq μ W.cm⁻² pour Δ T \approx 100K

A_{te} = 1 cm⁻ G. Savelli et al., ICT 2007, Jeju Island, South Korea

modules 2D SR Si/SiGe

substrat SOI 100mm motifs : lignes de \neq largeur N = 80 à 120 jonctions A_{te} = 1 cm² *G. Savelli et al., J. Micromech. Microeng., 2008*

2007, Corea Si/SiGe n argeur ns Micromech. GDR Thermoélectricité - 08/07/2009

Sommaire

1 - Thermoélectricité : une problématique à 3 niveaux

2 - Dimensionnement d'un système thermoélectrique

- 3 Optimisation des performances
- 4 Conclusions

Dimensionnement : définition du système d'étude

• Développement d'un modèle intégrant à la fois les 3 problématiques :

inconnue
$$T_c$$
?
 \rightarrow nécessaire pour
connaître $\Delta T = T_h - T_c$
• Équations de base : $P_{Seeb} + P_{cond} + P_{rad} + P_{Joul} = P_{ech}$
 $P_{Seeb} = N \times (S_p - S_n) \times (T_h - T_c) \times I = N \times S \times \Delta T \times I$
 $P_{cond} = \frac{A_{le}(T_h - (T_c)\tau)}{L} (\lambda \tau + \lambda_{air}(1 - \tau))$
 $P_{rad} = \sigma_{SB} \times (T_h^4 - (T_c)\tau)^4) \times (\frac{1}{A_{le} \times f} + \frac{2}{A_{le}}(\frac{1}{\varepsilon} - 1))^{-1}$
 $P_{loul} = \frac{1}{2}R_{int} \times I^2 = \frac{1}{2}R_{int} \times (\frac{S \times \Delta T}{2R_{iot}})$

GDR Thermoélectricité - 08/07/2009

liten

2 Dimensionnement : objectifs

$$N \times S \times T_{c}(\tau) \times I + \frac{A_{te}(T_{h} - T_{c}(\tau))}{L} (\lambda \tau + \lambda_{air}(1 - \tau)) + \frac{1}{2} \frac{FN^{2}}{\tau} \times I^{2} = (T_{c}(\tau) - T_{f})hA_{hs}$$

• Objectifs : obtenir une tension U ou une puissance $\mathsf{Q}_{\mathsf{gen}}$ maximale

$$U = N \times S \times (T_{h} - T_{c})$$
$$Q_{gen} = \frac{N^{2} \times S^{2} \times (T_{h} - T_{c})^{2} \times R_{L}}{R_{tot}^{2} \times A_{ech}}$$

- → trouver le bon dimensionnement géométrique permettant d'obtenir un ΔT le plus élevé possible et donc les meilleures performances
- Exemple d'étude :

	matériau TE	module TE	environnement
cas du SiGe polycristallin : $S_{SiGe}(n+p) = 151 \ \mu V.K^{-1}$ $\lambda_{SiGe} = 4.8 \ W.m^{-1}.K^{-1}$		$A_{te} = 1 \text{ cm}^2$	T _h = 400K
		$L = 5 \mu m$	T _f = 300K
		$A_{np} = 100 \times 100 \ \mu \text{m}^2$ $N = 400 \ \text{plots}$	$A_{ech} = 2 \text{ cm}^2$
	$\rho_{SiGe} = 2,3.10^{-5} \Omega.m$	$(R_{int} = 5.4 \Omega)$	h = 1000 W.m ⁻² .K ⁻¹
e	GDR Thermoél	GDR Thermoélectricité - 08/07/2009	

12

2 Influence de l'environnement

→ la nature de l'échange thermique entre le module et son environnement est un paramètre majeur !!

GDR Thermoélectricité - 08/07/2009

en

Influence des matériaux

Rload (Ω) \rightarrow influence de chaque paramètre sur les performances du module \rightarrow cette influence est plus ou moins modérée selon la nature du paramètre

5

 $\Delta T = 4.4 K$

 $\rho = 1000 \ \mu\Omega.cm$

 $\rho = 2300 \ \mu\Omega.cm$

 $\rho = 5000 \ \mu\Omega.cm$ $\rho = 8000 \ \mu\Omega.cm$

9

10

 \rightarrow seul λ influe simultanément et significativement sur ΔT et Q_{gen}

2 Influence de la géométrie du module

• Définition d'un nouveau paramètre : le taux de remplissage τ : TMR (Thermoelectric Materials Rate)

 \rightarrow fonction du volume de matériaux TE par rapport au volume total possible

$$\tau = \frac{N \times A_{np}}{A_{te}} \times 100$$

 \rightarrow influence de τ sur la tension de sortie U du module :

- étude du cas : A_{te} et A_{np} fixées et N variable
- rappel : $U = N \times S \times \Delta T$
- l'augmentation du nombre de plots N entraîne également la diminution de ∆T et donc de U

Sommaire

- 1 Thermoélectricité : une problématique à 3 niveaux
- 2 Dimensionnement d'un système thermoélectrique

3 - Optimisation des performances

4 - Conclusions

CECI 3 Optimisation des performances

 \rightarrow Insertion du paramètre TMR dans le modèle :

$$Q_{gen} = \frac{S^2 \times (T_h - T_c)^2 \times \tau}{4 \times A_{hs} \times F} \qquad \text{avec} \qquad F = \frac{4}{A_{te}} \times (\rho \times L + 2R_c)$$

$$\left(\frac{\partial Q_{gen}}{\partial \tau}\right)_{\tau_{opt}} = \frac{\partial}{\partial \tau} \left(\frac{S^2 \times (T_h - T_c(\tau))^2 \times \tau}{4 \times A_{hs} \times F}\right)_{\tau_{opt}} = 0$$

$$T_{h} - T_{c}(\tau_{opt}) - 2\tau_{opt} \times \left(\frac{\partial T_{c}(\tau)}{\partial \tau}\right)_{\tau_{opt}} = 0$$

 \rightarrow Comparaison de l'optimisation en fonction de la nature du matériau TE :

- SiGe poly
- Bi₂Te₃
- QDSL

	S _{n+p} (μV.Κ ⁻¹)	λ (W.m ⁻¹ .K ⁻¹)	ρ (μΩ.cm)	ZT (300K)
SiGe poly [Van Gerwen 95]	151	4.8	2300	0.015
Bi₂Te₃ [Peranio 06]	402	1.87	1500	0.43
QDSL [Mingo 09]	400	1.5	1600	0.5

3 Optimisation des performances

• Définition du taux de remplissage optimal τ_{opt}

→ pour chaque matériau, il y a un taux de remplissage optimal maximisant les performances du module

liten

 \rightarrow définition des design des modules en fonction des matériaux et de l'environnement :

h (W.m ⁻² .K ⁻¹)	matériaux	Q _{gen} (mW.cm ⁻²)	Géométrie	τ (%)
40	SiGe	0.0017	Anp = 64.10 ⁻⁶ mm² (a = 8 μm) e = 100 μm - Nplots = 8281	0.53
40	QDSL	0.051	Anp = 1.10 ⁻⁴ mm² (a = 10 μm) e = 10 μm - Nplots = 19600	2
100	SiGe	0.01	Anp = 36.10 ⁻⁴ mm² (a = 60 μm) e = 800 μm - Nplots = 144	0.52
100	QDSL	0.31	Anp = 1.10 ⁻⁴ mm² (a = 100 μm) e = 600 μm - Nplots = 196	1.9
1000	SiGe	0.77	Anp = 36.10 ⁻⁶ mm² (a = 6 μm) e = 60 μm - Nplots = 22201	0.8
1000	QDSL	23.5	Anp = 64.10 ⁻⁶ mm² (a = 8 μm) e = 40 μm - Nplots = 42025	2.4

→ pour chaque matériau, dans un environnement donné, il y a une optimisation spécifique du dimensionnement des modules !

• L'environnement, les matériaux et les modules sont les trois facteurs clés d'une problématique thermoélectrique et sont totalement dépendants.

• Chaque conception de module est une étude spécifique, fonction des matériaux intégrés et de l'application visée.

• Développement d'un modèle de dimensionnement prenant en compte ces trois facteurs, et permettant de répondre au mieux à un besoin spécifique.

• La seule optimisation géométrique d'un module permet de gagner plusieurs ordres de grandeur sur les performances.

MERCI de votre attention...

GDR Thermoélectricité - 08/07/2009