Optimisation du facteur de mérite : l'exemple des oxydes de cobalt

S. Hébert

Laboratoire CRISMAT UMR6508 CNRS et ENSICAEN

GDR Thermoélectricité, Nancy, juillet 2009

Plan de l'exposé

Introduction : comment augmenter ZT?

Nanostructuration

Augmentation du facteur de puissance + réduction de la conductivité thermique

Seduction de la conductivité thermique

Corrélations électroniques

Augmentation du facteur de puissance

Les oxydes de cobalt
 à structure lamellaire désaccordée

• Formule de Mott : $S = \frac{\pi^2 k_B^2}{3e} T(\frac{\partial \ln \sigma(E)}{\partial E})_{E=E_F}$ $\sigma(E) = en(E) \mu(E)$ S dépend de n(E), et de la position de E_F

• <u>Résistivité</u> : $\rho^{-1} = en(E)\mu(E)$ Forte mobilité

Conductivité thermique

Terme électronique lié à ρ⁻¹ (Wiedemann Franz) Terme de réseau à minimiser

Facteur de puissance Modification de DOS Corrélations électroniques

Conductivité thermique phononique Grattling' Nanostructuration

Nanostructuration

Formule de Mott

Tse et al., Handbook of Thermoelectricity (2006)

Hicks et Dresselhaus, PRB47, 12727 (1993) Hicks et Dresselhaus, PRB47, 16631 (1993)

ZT = 2.5! Superréseaux Bi₂Te₃/Sb₂Te₃

Figure 3 Temperature dependence of ZT of 10Å/50Å p-type Bi₂Te₃/Sb₂Te₃ superlattice compared to those of several recently reported materials.

Venkatasubramanian et al., Nature 413, 597 (2001)

Diffusion des phonons aux interfaces

Venkatasubramanian, PRB61, 3091 (2000)

Amélioration de la mobilité + Réduction de κ_L

FIG. 3. Experimental lattice thermal conductivity (K_L) and calculated average phonon mean free path (l_{mfp}) as a function of the period in Bi₂Te₃/Sb₂Te₃ superlattices and other reference materials. Note: There are three data points, almost on top of each other, at the 60 Å period, corresponding to 30 Å/30 Å, 10 Å/50 Å, 20 Å/40 Å structures.

Nanofils de silicium

A. I. Hochbaum et al., Nature 451, 163 (2008)A. I. Boukai et al., Nature 451, 168 (2008)

Si:ZT ~ 0.01 à 300K

Section 2005 Secti

Effet principalement lié aux Phonons :

réduction de κ + phonon drag pour S

2D electron gas in SrTiO₃

H. Ohta et al., Nat. Mater. 6, 129 (2007)

Réduction de la conductivité thermique 'Phonon glass'

Phonon glass / Electron crystal

 Atomes lourds dans des cages ('rattling')

- Structures cristallines complexes
 - Solutions solides

Matériaux composites
 Diffusion sur les défauts ponctuels
 Diffusion par les joints de grains

Nanostructures

Nanograins Si₉₅Ge₅ dopés P

Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium

G. H. Zhu,¹ H. Lee,² Y. C. Lan,¹ X. W. Wang,¹ G. Joshi,¹ D. Z. Wang,¹ J. Yang,¹ D. Vashaee,³ H. Guilbert,¹ A. Pillitteri,¹ M. S. Dresselhaus,⁴ G. Chen,^{2,*} and Z. F. Ren^{1,*}

¹Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA ²Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ³Department of Electrical and Computer Engineering, Oklahoma State University, Tulsa, Oklahoma 74106, USA ⁴Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 26 November 2008; published 14 May 2009)

Faible composition en Ge : bonnes propriétés électriques (moins de diffusion pour les électrons et bonne solubilité du P)

Nanograins (5 -20nm) : diffusion liée aux interfaces

Ge : responsable de diffusion sur des défauts ponctuels (phonons λ <1nm)

Nanostructuration : WSe₂ et superréseaux

Fig. 2. Summary of measured thermal conductivities of WSe₂ films as a function of the measurement temperature. Each curve is labeled by the film thickness. Data for a bulk single crystal are included for comparison. Error bars are the uncertainties propagated from the various experimental parameters used to analyze the data (*6*). The ion-irradiated sample (irrad) was subjected to a 1-MeV Kr⁺ ion dose of 3×10^{15} cm⁻². The dashed line marked Λ_{min} is the calculated minimum thermal conductivity for WSe₂ films in the cross-plane direction.

Défauts d'empilement ৬ réduction de κ Modification artificielle des empilements

0.05Wm⁻¹K⁻¹ à 300K!

FIG. 2. Cross-plane thermal conductivity of three-component $Bi_2Te_3/TTE_2/Sb_2Te_3$ films (filled triangle) and two-component Bi_2Te_3/Sb_2Te_3 films (open triangle) annealed at 250 °C. Open circles are thermal conductivities for Bi_2Te_3/Sb_2Te_3 superlattices in Ref. 25. Minimum thermal conductivity for Bi_2Te_3 (dashed line) was calculated using the model in Ref. 26 and is included for comparison.

Facteur de puissance en cours d'étude

Chitirescu et al., Science315, 351 (2007); JAP104, 033533 (2008)

Corrélations électroniques Terme diffusif Terme haute T (formule de Heikes)

Corrélations électroniques

Kondo insulators, Fermions lourds, oxydes...

A. Georges et al, Review of Modern Physics 68, 13 (1996)

Augmentation de S liée aux corrélations électroniques

$$S = \frac{\pi^2 k_B^2}{3e} T\left(\frac{\partial \ln \sigma(E)}{\partial E}\right)_{E=E_F}$$
$$C_{el} / T = \gamma = \frac{\pi^2}{3} k_B^2 N(E_F)$$

Rapport : S / chaleur spécifique C_{el} Limite $T \rightarrow 0$ = cste γ : partie électronique de la chaleur spécifique 0.5 < |q| < 2

K. Behnia et al. JPCM 16, 5187 (2004)

'Strongly correlated semiconductor FeSb₂'

A. Bentien et al., EPL80, 17008 (2007)

Comparaison avec RuSb₂, isostructural : Pas d'effet de phonon drag (pas observé dans RuSb₂)

Terme diffusif *10 lié aux corrélations électroniques

P. Sun et al., PRB79, 153308 (2009)

Effet similaire observé dans FeSi N. E. Sluchanko et al., EPL51, 557 (2000)

Modèle de Hubbard

$$S = \frac{-S^{(2)} / S^{(1)} + \mu / |e|}{T} \rightarrow \frac{\mu / |e|}{T} \qquad \text{for } T \rightarrow \infty$$

S⁽¹⁾, S⁽²⁾: depends on v and Q, velocity and energy operators Valid for narrow band systems with strong interactions

Limit $T \rightarrow \infty$: S ~ entropy / carrier

Chaikin et al. Phys. Rev. B 13, 647 (1976)

Entropie de spin

Terme supplémentaire de dégénérescence de spin dans la formule de Heikes

Pour un cation à valence mixte Mⁿ⁺ / M⁽ⁿ⁺¹⁾⁺: $\beta = \frac{2S_n + 1}{2S_{n+1} + 1}$

J. P. Doumerc JSSC 110, 419 (1994)

Dégénérescence de spin et d'orbitale Co³⁺ (3d⁶)/Co⁴⁺ (3d⁵)

J. P. Doumerc JSSC 109, 419 (1994) W. Koshibae et al., Phys. Rev. B 62, 6869 (2000)

 $x : Co^{4+}$ concentration

Les oxydes de cobalt à structure lamellaire désaccordée

NaCo₂O₄ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

(µ//K)

Z (10⁻⁴K⁻¹

Famille des bronzes de cobalt Na_xCoO₂

C. Fouassier et al., JSSC6, 532 (1973)

Fig. 7. Temperature dependence of the thermoelectric power of quenched pellets.

J. Molenda, C. Delmas, P. Dordor, A. Stoklosa, Solid Stat. Ionics 12, 473 (1989)

Propriétés Haute T de Na_xCoO₂

K. Fujita et al. JJAP40, 4644 (2001)

Mesures cristaux / polycristaux

Cristaux : 1.5 × 1.5 × 0.03 mm³

ZT ~ 1 pour les cristaux à 800K

NaxCoO2 _ Fujita : JJAP 40, 4644 (2001); SrTiO3 _ Muta : J. Alloys and compounds 350, 292 (2003); Ca2.4Bi0.3Na0.3Co4O9 _ Xu : APL80, 3760 (2002); Whiskers BiSrCoO _ Funahashi : APL81, 1459 (2002); Ca3Co2O6 _ Mikami : JAP94, 10 (2003); 2DEGs(SrTiO3) _ Ohta : Nature Materials 6, 129 (2007); Ca3Co4O9 crystal _ Shikano : APL 82, 1851 (2003); LaSrCoO _ Androulakis : APL84, 1099 (2004); ZnAIO _ Ohtaki : JAP79, 1816 (1996)

Dégénérescence de spin et d'orbitale Co³⁺ (3d⁶)/Co⁴⁺ (3d⁵)

J. P. Doumerc JSSC 109, 419 (1994) W. Koshibae et al., Phys. Rev. B 62, 6869 (2000)

 $x : Co^{4+}$ concentration

Influence de la structure de bande?

Rhombohedral crystalline field

Lifting of the t_{2g} levels degeneracy D. J. Singh, Phys. Rev. B 61, 13397 (2000)

Peak in $N(E_F)$

$$\frac{S}{T} = \frac{\pi^2 k^2}{3e} \left(\frac{d \ln(\sigma)}{dE}\right)_{E=E_{r}}$$

with $\sigma = N(E) < v_F(E)^2 >$

 a_{1g} : localized moments / heavy holes e 'g : mobile carriers / light holes

T. Yamamoto et al., Phys. Rev. B 65, 184434 (2002)

 $S = +110 \mu V/K$ at 300K calculated for $NaCo_2O_4$

Oxydes lamellaires à base de plans CoO₂

 $\begin{array}{l} \mathsf{Na_xCoO_2}\\ \mathsf{K_xCoO_2}, \ldots \end{array}$

Famille misfit : 2, 3 ou 4 plans séparateurs

Formule de Heikes : influence du dopage? Influence de la structure de bande : particularité des plans CoO₂ ? Rôle des plans séparateurs?

The misfit family

• n = 4 $[Bi_2A'_2O_4]^{RS}[CoO_2]_{b1/b2}$ $A' = Ca^{2+}, Sr^{2+} \text{ or } Ba^{2+}$ • n = 3 $[A'_2CoO_3]^{RS}[CoO2]_{b1/b2}$ $A' = Ca^{2+} \text{ or } Sr^{2+}$ • n = 2 $[Sr_2O_2]^{RS}[CoO2]_{b1/b2}$ $[Ca_2(OH)_2]^{RS}[CoO_2]_{b1/b2}$

NaCl-like triple layer (RS)

CoO_2 (type CdI_2)

Leligny et col., C. R. Acad. Sci. Paris, t. 2, Série II c, 409 (1999)

Boullay et col., Chem. Mater. 8, 1482 (1996)

Masset *et col.*, Phys. Rev. B 62, 166 (2000) Yamauchi *et col.*, Chem. Mater. 18, 155 (2005)

Ca₃Co₄O₉ single crystals

A. C. Masset et al., Phys. Rev. B 62, 166 (2000)

Two different behaviours at low T

Different resistivities but same S(T) Only a shift of S

Thermal conductivity

Wiedemann-Franz law :

$$\frac{\kappa_{\rm el}}{\sigma T} = \frac{3}{2} \left(\frac{k_{\rm B}}{e}\right)^2$$

 $\kappa_{el} \sim 0.03 Wm^{\text{--}1}K^{\text{--}1}$ at 300K

 κ mainly from phonons

Influence du dopage dans les misfits

$$\mathbf{v}_{Co} = 4 - \frac{\alpha}{b_1 / b_2}$$

Modification de v_{Co} via α et b_1/b_2 Lien entre v_{Co} et S?

BiSrPbCoO single crystals : modification of α

At 100K 1.73×10^{21} cm⁻³ for BPSCO 1.06×10^{21} cm⁻³ for BSCO

Increase of v_{Co} 3.109 for BSCO 3.178 for BPSCO

Increase of 'Co⁴⁺' associated to a decrease of S

From the generalized Heikes formula, increase of v_{Co} 3.59 for BSCO and 3.65 for BPSCO

W. Kobayashi et al., JPCM21, 235404 (2009)

BiCaCoO/ BiSrCoO/ BiBaCoO single crystals

S not affected by the strong modification of p

W. Kobayashi et al.

If b_1/b_2 , carrier concentration

$$\mathbf{v}_{Co} = 4 - \frac{\alpha}{b_1 / b_2}$$

\$S at 300K depends on doping $V_{Co} = 3.05 - 3.15$ (Hall effect)?

Carrier concentration changes with misfit ratio b₁/b₂

Co^{3.2+} for BiSrCoO

Co^{3.1+} for BiCaCoO

- \rightarrow similar to $k_{\rm F}$ of Na_xCoO₂ (x=0.7)
- Co^{3.3+} for BiBaCoO
 V. Brouet et al., PRB76, 100403 (2007)

Comparison with Na_xCoO₂

NMR experiments

Comparison of Seebeck coefficients of misfits and Na_xCoO₂

Confirms the Co⁴⁺ content determined through ARPES measurements

b₁/b₂ Bi/Ca/Co/O : 3.1 Bi/Sr/Co/O : 3.2 Bi/Ba/Co/O : 3.3

$$\mathbf{v}_{\mathrm{Co}} = 4 - \frac{\alpha}{\mathbf{b}_1 / \mathbf{b}_2}$$

J. Bobroff et al., PRB76, 100407 (2007)

Heikes formula

 $g_3 / g_4 = 1/2$ instead of 1/6? Confirms the results in BiCaCoO : $v_{Co} = 3.24$ M. Pollet et al., JAP101, 083708 (2007)

Importance des corrélations électroniques

P. Limelette, PRB71, 233108 (2005)

P. Limelette, PRL97, 046601 (2006)

Spin entropy at low T

Pouvoir thermoélectrique des misfits

Power factor P in Bi family

In conventional semiconducting thermoelectric material such as Bi_2Te_3 , *n* is an important parameter to tune the properties.

How to modify the electronic properties? Other structures with Cdl₂ type layers?

Ba_{1.2}Rh₈O₁₆ hollandite

15

10

0

50

100

150

Temperature (K)

200

250

300

Hall effect : 1.01 × 10²² cm⁻³ at 300K

For comparison : 190.10^{-4} Wm⁻¹K⁻² for Na_{0 88}CoO₂ at 75K W.Kobayashi et al., PRB79, 085207 (2009)

Na_xCoO_2 Misfits

Conductivité thermique

Influence de l'incommensurabilité?

A. Satake et al., JAP96, 931 (2004)

0

0

Ca₃Co₄O₉

Temperature (K)

200

300

100

Comportement unique des plans Cdl₂ : Comparaison avec d'autres oxydes

Perovskite $Sr_{2/3}Y_{1/3}CoO_{8/3+\delta}$

Octaèdres liés par les sommets (≠ liés par les arêtes)

A. Maignan et al., JSSC178, 868 (2005)

*Type p : Pr*_{1-x}Ca_xCrO₃ **Les orthochromites**

Type p : $Pr_{1-x}Ca_xCrO_3$

Marsh and Parris, Phys. Rev. B 54, 7720 (1996)

 $3d^2$

Metallic up to high T / S linear in T : $S = \pi^2 \times k_B/3e \times k_BT(\partial \ln \sigma(E)/\partial E)$ Power factor increases as T increases : $PF = 9.10^{-4}Wm^{-1}K^{-2}$ for x=0.02 at 800K

A. Maignan et al., Phys. Rev. B 58, 2578 (1998), J. Hejtmanek et al., PRB60, 14057 (1999)

Conclusion

Misfits

- Taux de porteurs élevé ~ 10²¹cm⁻³
- Coexistence métallicité + valeur élevée de S
- Formule généralisée de Heikes , avec β = $\frac{1}{2}$

J. Bobroff et al. PRB76, 100407 (2007)

Collaborateurs

Laboratoire CRISMAT Wataru Kobayashi, Denis Pelloquin, Antoine Maignan, Charles Simon, Raymond Frésard

Patrice Limelette, LEMA, Tours

Collaborations Julien Bobroff, Véronique Brouet, LPS Orsay Jiri Hejtmanek, Prague