Transition metal perovskites

- J. Hejtmánek¹, K. Knížek¹, Z. Jirák¹, M. Maryško¹,
 P. Tomeš ², D. Logvinovich ², A. Weidenkaff ²
 Y. Klein ³, A. Maignan ³ and C.Martin ³
- ¹ Institute of Physics of ASCR, v.v.i, Na Slovance 2, 182 21 Praha 8, Czech Republic
- ² Solid State Chemistry and Catalysis, Empa, Ueberlandstrasse 129. CH-8600. Duebendorf, Switzerland
- ³ CRISMAT, ENSICAEN, CNRS-UMR6508, 6 BouleVard du Mare´chal Juin, 14050 Caen Cedex, France

Outline:

Prospective in thermoelectrics- stability at high temperatures, possibility to enhance the thermoelectric power by means of the spin degree of freedom, depression of thermal conductivity - "disorder or fluctuations (spin,orbital)"

Introduction

- Electrical conductivity, Charge transfer vs Mot Hubbard insulator

-Thermoelectric power, electron transport, thermoelectricity

Thermoelectric phenomenology

Electrical and thermal transport, magnetism from 4 K up to 300 K(λ),800 K(χ ,**M**),1200 K (**S**, ρ)

MATERIALS

 Mn^{3+}/Mn^{4+} perovskites: ferromagnetic double-exchange \Leftrightarrow degenerate carriers vs. antiferromagnetic super-exchange \Leftrightarrow orbitaly polarized, insulating charge ordered electronic states.

 Co^{3+}/Co^{4+} perovskites : the minute energy difference between the low-spin ground-state (filled t_{2g}) vs magnetic one (active e_g states) \Leftrightarrow the origin of "exotic" charge carriers and thermal properties

 $Cr^{3+}/Cr^{4+}(t_{2g})$ and $Fe^{3+}/Fe^{4+}(e_g)$ perovskites with identical concentration of both species documented; chromite represents likely a unique example of material with a pronounced role of orbital entropy in the thermopower.

Ferromagnetic $SrRuO_3$ has a high positive thermoelectric power and low thermal conductivity \Leftrightarrow a close link between the thermal and electron transport and magnetism; published results of the thermoelectric power of isoelectronic $SrFeO_3$ and $SrRuO_3$ are confronted. The role of charge compensation effect due to Na^{1+} for Sr^{2+} substitution is probed on solid solutions $Sr_{1-x}Na_xRuO_3$ (x = 0.0 – 0.25) is documented.

As a novelty one of the most conducting perovskite $SrMoO_3$ in connection with nitridation ($SrMoO_2N$) is also mentioned.

Key features of band structure Orbital Overlap in the t_{2g} Band

 Γ point (k_x=k_y=k_z=0)

3

π bonding in MO₆ framework

Key features of band structure of perovskites Orbital Overlap in the e_g Band

 Γ point (k_x=k_y=k_z=0)

σ bonding in MO₆ framework ⁴

Key features of band structure of perovskites

Simple Band Structure

Key features of band structure of perovskites

- Considerations⇔energy is gained (lowered, system is stabilized) via hybridization between occupied and empty orbitals with same symmetry⇔AFM or FM interaction inferred
- $e_g e_g$ hybridization is stronger than $t_{2g} t_{2g}$ hybridization because of greater overlap.
 - Simple projection in Superexchange and Double-exchange

Spin polarized Energy Diagram 6

Figure of merit – Thermoelectric parameters

 $ZT = \frac{\alpha^2 \sigma}{T}$ K

 $\kappa = \kappa_e + \kappa_{ph}$

Minimize κ_{ph} : usual strategies apply olso to oxides

Thermal Conductivity of Solids

•Solids transmit thermal energy by three modes

- -Elastic vibrations of the lattice moving through the crystal in the form of waves
- Free electrons moving through the lattice carry energy similar to the case in gasses
- Magnetic excitations can also carry heat by a similar way as phonons

$$\lambda_{total} = \lambda_{phon} + \lambda_e + \lambda_{mag}$$

Respective thermal conductivity:

Thermopower in metals

(Band Structure View Point)

Thermopower in metals

(Band Structure View Point)

Thermopower in metals (Band Structure View Point)

Thermopower:

- From energy dependent conductivity.
 - Mott formula:

$$s = \left(\frac{\pi^2 k_B^2 T}{3e\sigma}\right) \frac{\partial \sigma}{\partial E}\Big|_{E=E_F}$$

• Note log derivative (not an extensive quantity – multiplicative factors in density of states (specific heat, entropy) or in σ do not change S.

Density of States

-- Number of electron states available between energy E and E+dE

12

Thermopower in non-metals

•B is configurational entropy ter

Thermopower for hopping charge carriers

Thermopower-temperature dependence

Manganites

Phase diagram of Mn³⁺/Mn⁴⁺ perovskites

The thermoelectric properties of $Ca_{1-x}Re_xMnO_3$ ceramics – low doping

The temperature dependence of the charge carrier mobility for Mn⁴⁺ rich manganites

Cobaltites

 $Co^{3+}_{LS}(t_{2a}^{6}e_{a}^{0}, S=0)$ Co^{3+}_{IS} ($t_{2q}^{5}e_{q}^{1}$, S=1), JT active, spin-orbit interaction Co^{3+}_{HS} ($t_{2a}^{4}e_{a}^{2}$, S=2), JT active $Co^{4+}LS(t_{2g}^{5}e_{g}^{0}, S=0.5)$, spin-orbit

 Co^{4+}_{IS} (t_{2g}⁴e_g¹, S=1), JT active, spin-orbit interaction

$$Co^{2+}_{HS}$$
 (t_{2g}⁵e_g², S=1.5), spin-orbit ²¹

Possible spin states and total degeneracy of ground-states of Co²⁺, Co³⁺ a Co⁴⁺ species (S=Spin only number neglecting orbital moment)

	HS		LS		IS		
Ionio stata	$(J_H > \Delta_{CF})$		$(J_H < \Delta_{CF})$		$(J_H \sim \Delta_{CF})$		
Ionic state	No	Distortion	No	Distortion	No	Distortion	
	distortion	$(\Delta_{JT} >> 0)$	distortion	$(\Delta_{JT} >> 0)$	distortion	$(\Delta_{JT} >> 0)$	
	+ +		+ -				
Co ²⁺	11 11 1	+ ++ ++	11 11 11	++ ++ ++	×	×	
	$G_{spin} = 4$	$G_{spin} = 4$	$G_{spin} = 2$	$G_{spin} = 2$			
	$G_{orb} = 3$	$G_{orb} = I$	$G_{orb} = 2$	$G_{orb} = I$			
	Gtot = 12	$\frac{\text{Gtot} = 4}{4}$	$\mathbf{Gtot} = 4$	<u>Gtot = 2</u>			
Co ³⁺	++		— —		+ —		
	# + +	+ + + +	# # #	×	# # +	+ + ++ ++	
	$G_{spin} = 5$	$G_{spin} = 5$	$G_{spin} = 1$		$G_{spin} = 3$	$G_{spin} = 3$	
	$G_{orb} = 3$	$G_{orb} = 1$	$G_{orb} = 1$		$G_{orb} = 6$	$G_{orb} = 1$	
	$\frac{\text{Gtot} = 15}{15}$	$\frac{\text{Gtot} = 5}{2}$	$\mathbf{Gtot} = 1$		$\mathbf{Gtot} = 18$	$\frac{\text{Gtot} = 3}{3}$	
Co ⁴⁺	++		— —	—	+ -		
	+ + +	×	# # +	+ ++ ++	11 + +	+	
	$G_{spin} = 6$		$G_{spin} = 2$	$G_{spin} = 2$	$G_{spin} = 4$	$G_{spin} = 4$	
	$G_{orb} = 1$	-	$G_{orb} = 3$	$G_{orb} = 1$	$G_{orb} = 6$	$G_{orb} = 1$	
	<mark>Gtot = 6</mark>		<mark>Gtot = 6</mark>	Gtot = 2	Gtot = 24	Gtot = 4	

3D oxide perovskites –transport and magnetism Sr,Ba-doped LaCoO₃ LS—LS/HS —IS σ^*

>M-I transition is linked with magnetic one, metallic samples are FM with enhanced metallicity below Tc ($t_{2g}^{5}\sigma^{*}$)

For low x the thermoelectric power is temperature weakly dependent, the absolute value at room temperature corresponds to that deduced from a simple configurational entropy approximation (x=0.005 S_{Heiks}= 455 μ VK⁻¹⇔S_{exp}~500 μ VK, x=0.05 S_{exp}~250 μ VK⁻¹⇔S_{Heiks}~ 257 μ VK⁻¹)

Co³⁺:Co⁴⁺ =1:1; role of tolerance factor *t*

Sr-doped LaCoO₃ LS-HS, CaMnO₃ spin fluctuations

Cobaltites –magnetotransport & carrier concentration (n/Co) Anomalous Hall Effect

THERMOELECTRIC PERFORMANCE 3D oxide perovskites La_{1-x}Ca_xCoO₃

Magnetic properties of La_{0.3}Ca_{0.7}CoO₃ – magnetic susceptibility

28

Chromites

FIG. 3. The same as Fig. 2 (without resistivity) for $CaCrO_3$. Inset: magnetization to 5.5 T at 5 K.

>complex configurational entropy approximation applies

>(magnetic, orbital contribution) S_{Heiks} = +69 μ VK⁻¹

31

Ferrites

 $\frac{\text{Fe}^{3+}}{\text{Fe}^{4+}} = 1$ LS Fe⁴⁺ ($t_{2\alpha}^{4}$, S=1.0, O=3) $G_{spin}=3, G_{orb}=3, G_{tot}=9$ $S^{LS}_{mag} = -\frac{k_B}{e} \ln \left(\frac{G^{Fe}_{spin}}{G^{Fe^{4+}}_{min}} \right) = -59 \,\mu V K^{-1}$ HS Fe⁴⁺ (t_{2g}^{4} , S=2.0, O=2) $S^{HS}_{mag} = -\frac{k_B}{e} \ln \left(\frac{G^{Fe^{3+}}_{spin}}{G^{Fe^{4+}}} \right) = -16 \mu V K^{-1}$ $G_{spin}=5, G_{orb}=2, G_{tot}=10$ $S^{LS}_{mag+orb} = -\frac{k_B}{e} \ln \left(\frac{G_{tot}^{Fe^{3+}}}{G^{Fe^{3+}}}\right) = +35 \mu V K^{-1}$ HS Fe³⁺ (t_{2g}^{5} , S=2.5, O=1) $S^{HS}_{mag+orb} = -\frac{k_B}{\rho} \ln \left(\frac{G_{tot}^{Fe^{3+}}}{G^{Fe^{3+}}} \right) = +44 \mu V K^{-1}$ $G_{spin}=6, G_{orb}=1, G_{tot}=6$

SrFeO_{3-δ}

E. Hemery, thesis, Victoria University of Wellington, 2007

HS Fe^{4+} 2S+1=5, O=2, SO=10 LS Fe^{4+} 2S+1=3, O=3, SO=9 HS Fe^{3+} 2S+1=6, O=1, SO=6 S~ - 18 μ VK⁻¹

E. Hemery, thesis, Victoria University of Wellington, 2007

Figure 7.3: Zero Field Cooled (ZFC) and Field Cooled (FC) magnetisation at 6 T for SrFeO_{2.95}, SrFeO_{2.80} and SrFeO_{2.72}. Inset: zoom in of the SrFeO_{2.72} measurement.

$$S^{HS}_{mag} = -\frac{k_B}{e} \ln \left(\frac{G_{spin}^{Fe^{3+}}}{G_{spin}^{Fe^{4+}}} \right) = -16 \mu V K^{-1}$$

➤ configurational entropy approximation applies above 150 K

(magnetic, no orbital contribution) $S_{\text{Heiks}} = -16 \,\mu\text{VK}^{-1}$

Figure 7.8: TEP versus temperature for (a) $SrFeO_{2.95}$, (b) $SrFeO_{2.865}$, (c) $SrFeO_{2.81}$, (d) $SrFeO_{2.79}$ and (e) $SrFeO_{2.78}$.

SrFeO_{3-δ}

Figure 7.6: Temperature dependence of the resistivity for (a) $SrFeO_{2.95}$, (b) $SrFeO_{2.865}$ and (c) $SrFeO_{2.81}$.

Ruthenates

 $Ru^{5+}(t_{2g}^{3}, S=1.5, O=1)$ No mixing entropy, only magnetic or orbital

$$G_{spin}=4, G_{orb}=1, G_{tot}=4$$

$$S^{LS}_{mag} = -\frac{k_B}{e} \ln\left(\frac{G_{spin}^{Ru^{5+}}}{G_{spin}^{Ru^{4+}}}\right) = +25\mu V K^{-1}$$

$$Ru^{4+} (t_{2g}^{4}, S=1.0, O=3)$$

$$S^{LS}_{mag} = -\frac{k_B}{e} \ln\left(\frac{G_{spin}^{Ru^{4+}}}{G_{spin}^{Ru^{3+}}}\right) = +35\mu V K^{-1}$$

$$G_{spin}=3, G_{orb}=3, G_{tot}=9$$

$$S^{LS}_{mag+orb} = -\frac{k_B}{e} \ln\left(\frac{G_{lot}^{Ru^{5+}}}{G_{lot}^{Ru^{4+}}}\right) = -69\mu V K^{-1}$$

$$Ru^{3+} (t_{2g}^{5}, S=0.5, O=3)$$

$$S^{LS}_{mag+orb} = -\frac{k_B}{e} \ln\left(\frac{G_{spin}^{Ru^{3+}}}{G_{spin}^{Ru^{3+}}}\right) = +35\mu V K^{-1}$$

$$G_{spin}=2, G_{orb}=3, G_{tot}=6$$

$$37$$

Ru-perovskites – CW behaviour (FM, AFM, PM)

Ru-perovskites – CW behaviour (FM, AFM, PM)

Ru-perovskites - magnetism

Properties of metallic ruthenates

(Directly taken or calculated on a base of Reference below

	CaRuO ₃	$Ca_{0.83}Sr_{0.17}RuO_3$	$Ca_{0.5}Sr_{0.5}RuO_3$	$Ca_{0.25}Sr_{0.75}RuO_3$	SrRuO ₃	BaRuO ₃	Sr_2RuO_4	RuO_2
μ_{eff} (μ_{B})	<mark>2.1</mark>	<mark>2.4</mark>	<mark>2.8</mark>	<mark>2.8</mark>	<mark>2.8</mark> , <mark>2.8</mark>	-	<mark>4.95</mark>	
$\Theta_{\rm C}\left({\rm K}\right)$	<mark>-57</mark> <mark>-68</mark>	<mark>14</mark>	<mark>57</mark>	<mark>82</mark>	<mark>+170</mark>	-	<mark>-2100</mark>	
$\chi_o^{experiment} *10^{-4}$ (emu mol ⁻¹ Oe ⁻¹)	<mark>6.9</mark> 7	<mark>29</mark>	13	<mark>21</mark>	<mark>8.7</mark>	<mark><3</mark>		1.39
γ (Jmol ⁻¹ K ⁻²)	<mark>-74</mark>	<mark>95</mark>	<mark>60</mark>	<mark>95</mark>	<mark>29</mark>	<mark>7.7</mark>		5.77
m*/ m ₀ (~ γ/γ_{bare})	<mark>6 m</mark> 0				<mark>3.4 m₀</mark>			
$\chi_{o}^{calcul} = 3\mu_{B}^{2} \gamma/\pi^{2} k_{B}^{2}$ (emu mol ⁻¹ Oe ⁻¹)*10 ⁻⁴	<mark>10</mark>	12.8	<mark>8.1</mark>	<mark>12.8</mark>	<mark>3.9</mark>			0.78
$R_W = \pi^2 k_B^2 / 3\mu_B * \chi_o^{exp} / \gamma$	<mark>0.7</mark>	<mark>2.26</mark>	<mark>1.6</mark>	<mark>1.6</mark>	<mark>2.3</mark>	<mark><2.9</mark>		1.7
$n^{200 \text{ K}}(\text{cm}^{-3})*10^{22}$	<mark>+1.5</mark> 0.9		<mark>+0.9</mark>	<mark>+0.9</mark>	+1.2 +1.8	<mark>+0.7</mark>	->10 (comp)	5.6
$n^{5 K}(cm^{-3}) * 10^{22}$	<mark>-3</mark>		<mark>+0.3</mark>	<mark>+0.3</mark>	<mark>-1.8</mark>			5.0 (77K)
$\rho^{300 \text{ K}}(\mu\Omega \text{cm})$	<mark>~200 200</mark> 3000		~600		<mark>~200 200</mark> 1000	<mark>~100</mark>	<mark>~100</mark> 20000	35 330
$S^{800 K} (\mu V K^{-1})$	<mark>32</mark>				<mark>32</mark>		24 (700 K)	10
$S^{300} K (\mu V K^{-1})$	<mark>32</mark>				<mark>34</mark>		<mark>28</mark>	0
$S^{20 K} (\mu V K^{-1})$	<mark>0.6</mark>				<mark>5.0</mark>		5.7	<mark>2.7</mark>
$S/T^{10 K} (\mu V K^{-2})$	0.0 !!				0.27		0.28	0.12

Reference: J. Appl.Phys, 81(8), 4978, PRB, 51, 16432, PRB,63,R 161102, PRB,56, 321, Phys.Rev.,37,303(1931), PhysRevB,Vol1,1494(1970), our data

SrRuO ₃ thin layers (properties at 4 K), APL 82, No.3, 427,
Majority carriers , $l = 45 \text{ Å}$
Minority carriers , $l = 80 \text{ Å}$
Spin polarization ~ 50 % due to different Fermi velocity of Λ (spin up) Ψ (spin down) carriers, NOT DIFFERENT CONCENTRATION
Fermi velocity – majority $\emptyset \langle v \rangle = 0.65 * 10^{5} \text{ ms}^{-1}$
Fermi velocity – minority $\emptyset \langle v \rangle = 1.1 * 10^{5} \text{ ms}^{-1}$

Sr_{1-x}Na_xRuO₃

44

Common oxide metals RuO_2 - Pauli metal vs. $SrRuO_3$ – CW metal,

Molybdenates – sintering, synthesis, properties

Molybdenates – oxynitride

Transition metal perovskites and thermoelectricity

- Oxide perovskites represent an interesting class of chemically stable materials with a potential to be used as high-temperature thermoelectrics
- Both diffusive "metallic" (linear od quasilinear in T) or "hopping" (temperature independent) thermopower behaviour is observed in highly electrically conducting perovskites
- Magnetic interactions of conducting electron-holes are likely at the origin of dominance of thermopower configurational entropy character over the diffusive one
- Cr^{3+/}Cr⁴⁺ perovskites represent a unique example where the orbital degree of freedom to the configurational entropy applies
- Curie-Weiss magnetic behaviour seems to be the essential perquisite for the magnetic contribution to the thermopower
- Magnetic and/or spin-state fluctuations are efficient in lowering thermal conductivity as evidenced for Co perovskites

Acknowledgments

We acknowledge the financial support from the Grant Agency of the ASCR. and GACR, Grant No. 202/06/0051.