

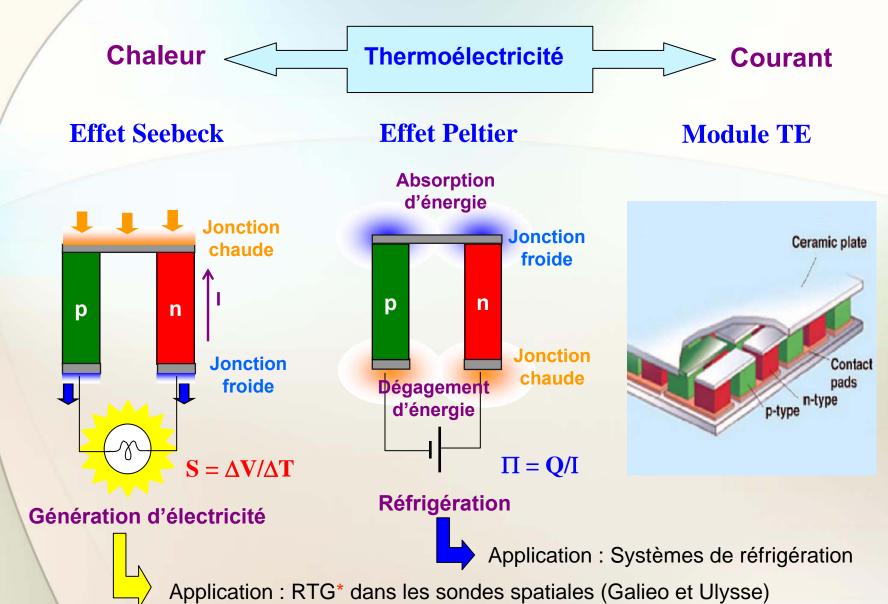
Texturation et empilement des céramiques Ca₃Co₄O₉: Anisotropie des propriétés mécaniques et thermoélectriques

D. Kenfaui, D. Chateigner, M. Gomina et J.G. Noudem

Laboratoire de Cristallographie et Sciences des Matériaux-CRISMAT/ENSICAEN, UMR 6508 CNRS

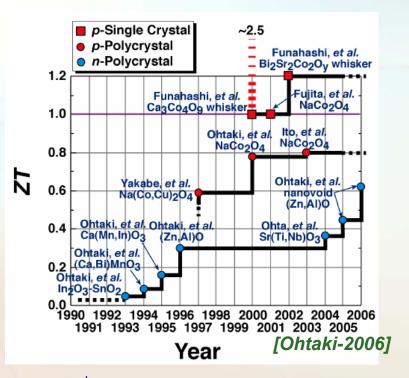
6, Boulevard Maréchal Juin 14050 CAEN Cedex 4

http://www-crismat.ensicaen.fr


2ème réunion du GDR Thermoélectricité, ENSCP Paris

01 juin 2008

Plan


- Thermoélectricité & Matériaux thermoélectriques
 - Oxydes Ca₃Co₄O₉
 - > Elaboration d'empilement Ca₃Co₄O₉ par le procédé HP
- Caractérisation microstructurale
 - Analyses par diffraction X
 - Observations MEB
- Caractérisations thermoélectriques
 - Résistivité à basses et à hautes températures
 - Anisotropie
 - > Pouvoir thermoélectrique
- Caractérisations mécaniques
 - > Module d'Young et dureté
 - Anisotropie
- Conclusions et perspectives

Thermoélectricité

Matériaux thermoélectriques

■ Etat de l'art

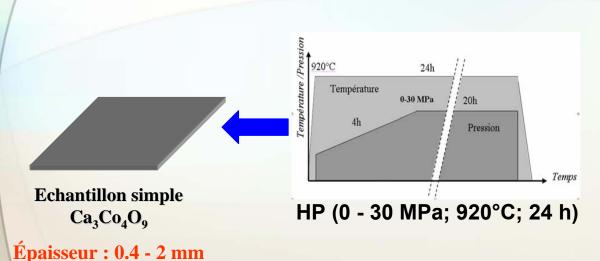
→ La figure de mérite, ZT

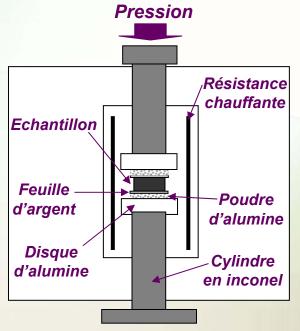
$$ZT = \frac{S^2}{\rho \cdot \kappa} T$$

S: coefficient de Seebeck (V/K)

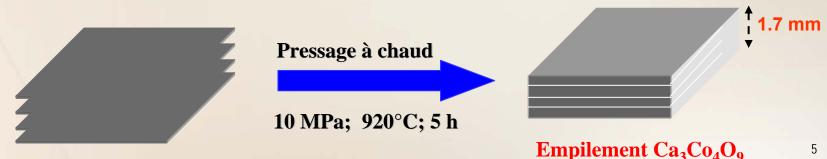
T : température absolue (K)

 ρ : résistivité électrique (Ω .m)


 κ : conductivité thermique ($\Omega/m.K$)


■ □ Ω oigstifes oxydes Ca₃Co₄O₉ (349)?

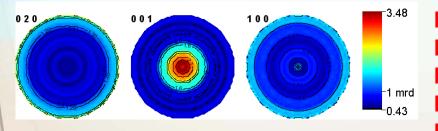
Élaborer des matériaux texturés suffisamment épais et étudier leur comportement mécanique et leurs propriétés TE en corrélation avec la microstructure > intégration dans les modules TE.


Élaboration des céramiques Ca₃Co₄O₉

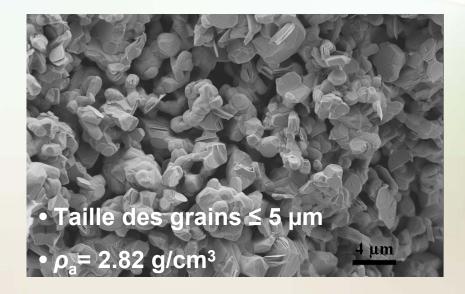
- □ La poudre Ca₃Co₄O₉ est synthétisée par la réaction à l'état solide, mise en forme à froid de pastilles.
- □ Pressage à chaud, HP, des pastilles

□ Empilement des échantillons pressés à chaud à 30 MPa.

Caractérisation microstructurale


Diffraction des rayons X

Microscope électronique à balayage



Echantillon préparé à 0 MPa

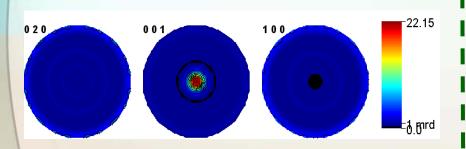
> Figures de pôles

- Le max des pôles {001} est de 3.5 mrd (multiples of a random distribution).
- Cet échantillon ne présente pas de texture

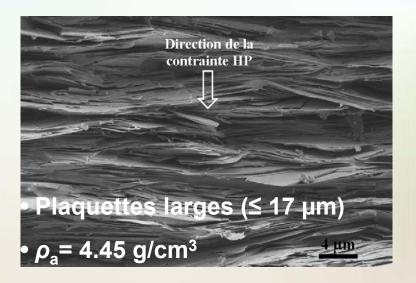
- Distribution aléatoire des grains
- Porosité élevée → Faible densité (60%)

(densité théorique : 4.68 g/cm³) [Masset -2000]

Caractérisation microstructurale


Diffraction des rayons X

Microscope électronique à balayage

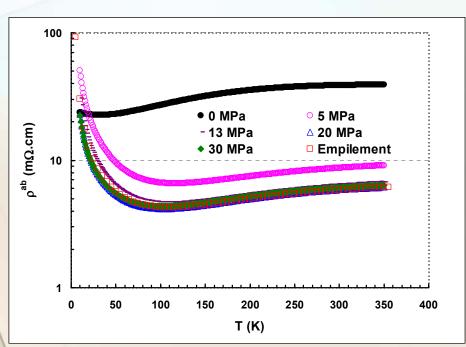


Échantillon préparé à 30 MPa

> Figures de pôles

- Le max des pôles {001} est de 22 mrd.
 (M. Prevel-[2005])
 - **▶** Les directions <001> sont fortement alignées parallèlement à l'axe du pressage.

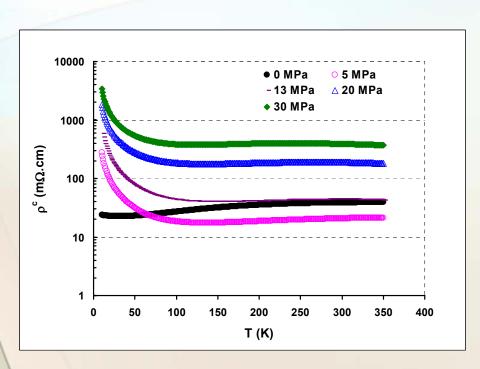
- Plaquettes orientées parallèlement à la direction du pressage.
- Diminution de la porosité → d = 96%


Caractérisation microstructurale

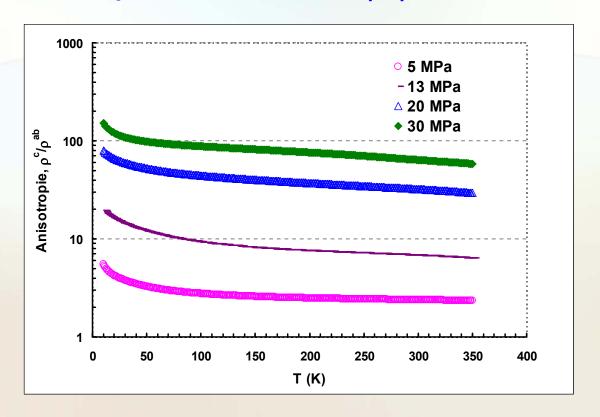
> Densités et maximums de figures de pôles {001} obtenus pour différents niveaux de pression

Pression, (MPa)	0	5	13	21	30
Max de figures de pôles {001}, (mrd)	3.48	7.82	9.28	15.36	22.15
Densité (%)	60	90.5	94.6	95.3	96

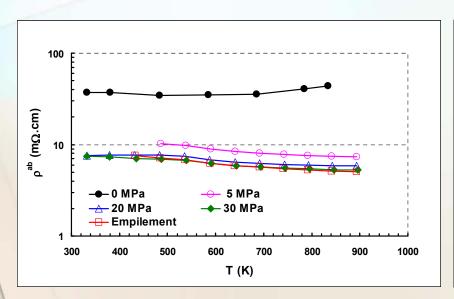
Pressage à chaud : 920°C, 24 heures, 30 MPa

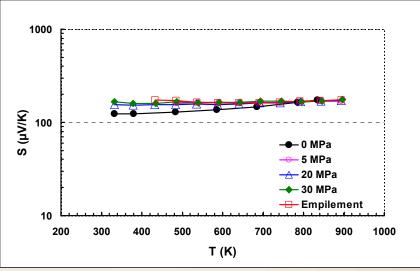

- Basses températures (5 K 350 K)
 - → Méthode standard de quatre contacts DC.
 - → Système PPMS (Quantum Design Physical Property Measurement System)
 - Mesure de la résistivité dans le plan (ab), ρ^{ab}(T)

- ✓ Forte diminution de ρ^{ab} avec la pression appliquée.
- densification
- texturation
- $\sqrt{\rho^{ab}}$ = 6 mΩ.cm à 300 K pour les échantillons élaborés à 30 MPa.

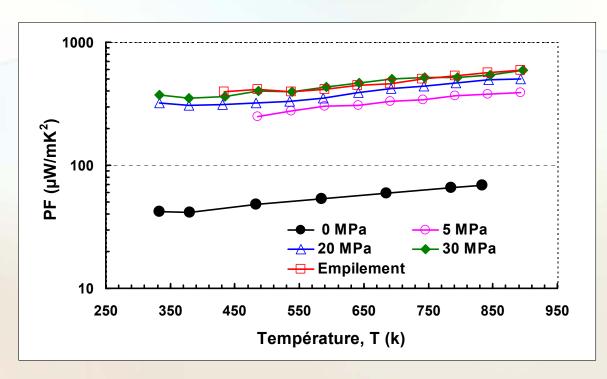

 \odot L'empilement a conservé les mêmes valeurs de ρ^{ab} que celles trouvées pour les échantillons préparés à 30 MPa.

- Basses températures (5 K 350 K)
 - Mesures de la résistivité, ρc, suivant l'axe de pressage
 - → Méthode de Montgomery (H.C. Montgomery-[1971])

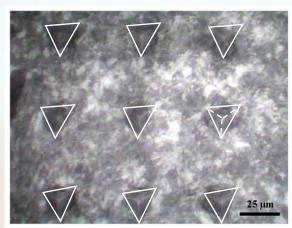

- ✓ Forte augmentation de ρ^c avec la pression appliquée
- amélioration de la texture
- Augmentation de barrières intergranulaires

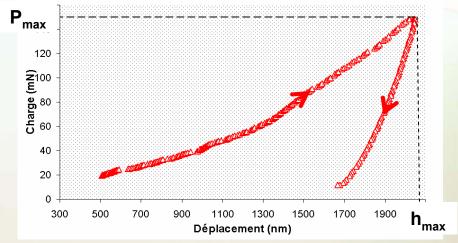

- Basses températures (5 K 350 K)
 - Anisotropie de la résistivité, ρ^c/ρ^{ab}

- $\checkmark \rho^{c}/\rho^{ab}$ augmente remarquablement avec la pression.
- $\rightarrow \rho^{c}/\rho^{ab}$ = 64 à 300 K pour l'échantillon préparé à 30 MPa.


- Hautes températures (350 K 800 K)
- Mesures de la résistivité, ρ^{ab} et du coefficient de Seebeck, S
 - → Utilisation de l'appareil ZEM-3

- \checkmark Forte réduction de ρ^{ab} avec la pression (5.25 m Ω .cm à 893 K pour 30 MPa)
- ✓ Indépendance du S de la pression (174 µV/K à 896 K pour 30 MPa)
 - \odot L'empilement a conservé les mêmes valeurs de ρ^{ab} et de S que celles obtenues pour les échantillons préparés à 30 MPa.

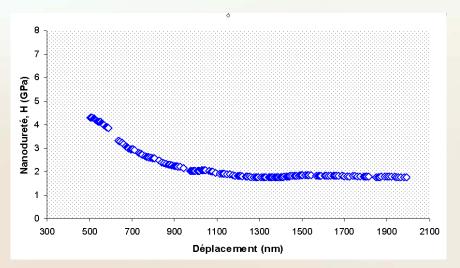

- Hautes températures (350 K 800 K)
 - Facteur de puissance, PF = S²/ρ


Comparable avec les valeurs publiées [Y. Zhou - 2002]).

- → Forte amélioration du PF avec la pression (595 μW/mK² à 893 K pour 30 MPa).
- © L'empilement affiche les mêmes valeurs du PF que celles trouvées pour les échantillons préparés à 30 MPa.

- Technique de nanoindentation (Indenteur XP MTS)
- Principe (Exemple de l'échantillon préparé à 30 MPa)

Matrice 3x3 des empreintes introduites sur la surface de l'échantillon préparé à 30 MPa


Courbe charge-déplacement obtenue pour un test de nanoindentation.

→ Dureté, H, du matériau pour une profondeur d'indentation, h.

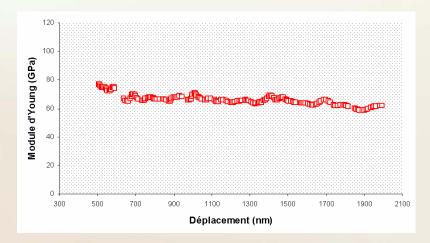
 P_{max} : Le chargement mesuré à h_{max} .

A : La surface du contact projetée entre l'indenteur et le matéria à P_{max} .

Courbe dureté-déplacement

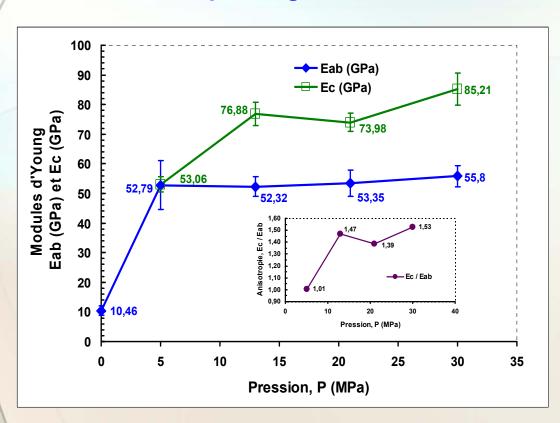
Courbe dureté-déplacement obtenue pour un test de nanoindentation effectué sur l'échanillon préparé à 30 MPa

→ Le module élastique, E

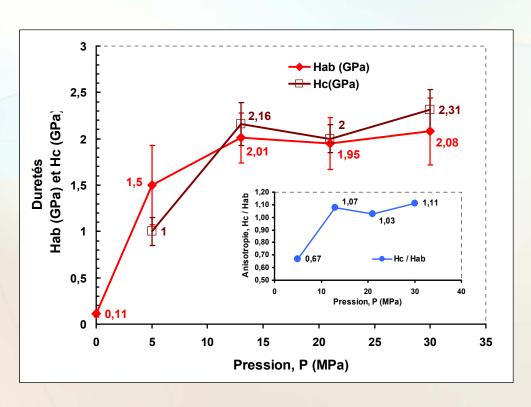

$$E_r = (\pi^{1/2}.S)/(2.\beta.A^{1/2})$$

- S = dP/dh : la raideur élastique du contact définie comme la pente du début de la courbe de déchargement.
- β = 1.034 pour une pointe de type Berkovich.

$$E = (1-v^2) [1/E_r - (1-v_i^2) / E_i]^{-1}$$


- v et v_i sont les coefficients de Poisson du matériau testé et de l'indenteur, respectivement.
- E_i est le module élastique de l'indenteur

Courbe module d'Young-déplacement


Courbe Module d'Young-déplacement obtenue pour un test de nanoindentation effectué sur l'échantillon préparé à 30 MPa

 \rightarrow Modules d' Young parallèle, E_{ab} , et perpendiculaire, E_c , à la direction de pressage.

- ☐ Forte augmentation du E quand P est passée de 0 à 5 MPa.
- E est amélioré de 10.5 à 52.8 GPa quand la densité est passée de 60 à 90,5% et le max de pôles {001} de 3.48 à 7.82 mrd.
- →Amélioration de E est plus liée à l'augmentation de la densité qu'à celle de la texture.
- □ Au-dessus de 5 MPa \rightarrow Anisotropie du E ($E_c/E_{ab} = 1.53$ pour 30 MPa).
- → Pour 30 MPa, E_{ab} et E_c sont améliorés de 5 et 8 fois, respectivement.

> Duretés parallèle, H_{ab}, et perpendiculaire, H_c, à la direction de pressage.

- ☐ La dureté, H, présente une évolution similaire que E.
- □ Au-dessus de 13 MPa \rightarrow Anisotropie de H (H_c/H_{ab} = 1.11 pour 30 MPa).

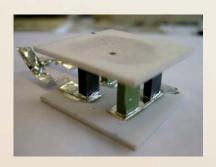
- → Pour 30 MPa, H_{ab} et H_c sont améliorés de 19 et 21 fois, respectivement.
- **⇒** Echantillon empilé : H_{ab}= 1.93 ± 0.3 GPa

$$H_c = 1.8 \pm 0.1$$
 GPa.

Caractéristiques dans les plans-ab

Pression, (MPa)	0	5	13	21	30
Max de pôles (001), (mrd)	3.48	7.82	9.28	15.36	22.15
Densité (%)	60	90.5	94.6	95.3	96
E _{ab} (GPa)	10.5	52.8	52.3	53.3	55.8
H _{ab} (GPa)	0.11	1.5	2.01	1.95	2.08
ρ ^{ab} _{300K} (mΩ.cm)	38.8	8.7	6.5	6	6.1
ρ ^{ab} _{893K} (mΩ.cm)		7.31		5.88	5.25
PF ^{ab} ₈₉₃ (μW.m ⁻¹ .K ⁻²)		390		501	595

[Y. Zhou-2002].

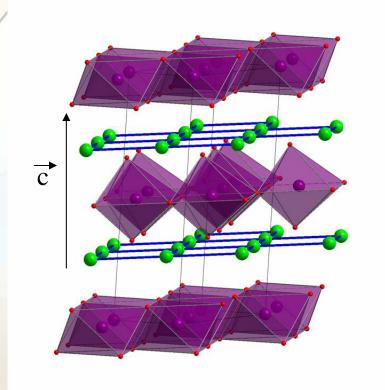

Conclusions

- Élaboration des céramiques 349 denses (96%), hautement texturées (22 mrd) et avec des grains larges (≤ 17 μm) à 30 MPa.
- Amélioration des modules d'Young, E_{ab} et E_c, et des duretés, H_{ab} et H_c, avec la pression.

 (A 30 MPa, E_c est amélioré de 8 fois, E_{ab} de 5 fois, H_c de 21 fois et H_{ab} de 19 fois).
- Forte réduction de ρ^{ab} à basses et à hautes températures avec la pression (6.1 mW.cm à 300 K et 5.3 mW.cm à 893 K pour 30 MPa).
- Augmentation du pouvoir thermoélectrique, PF (595 μW.m⁻¹.K⁻² à 893 K)
- Anisotropies de E, H et ρ augmentent avec la pression. $(E_c/E_{ab}) = 1.53$; $(H_c/H_{ab}) = 1.11$ et $(\rho^c/\rho^{ab})_{300K} = 64$ à 30 MPa
- Élaboration des échantillons texturés suffisamment épais pour envisager leur intégration dans les modules TE

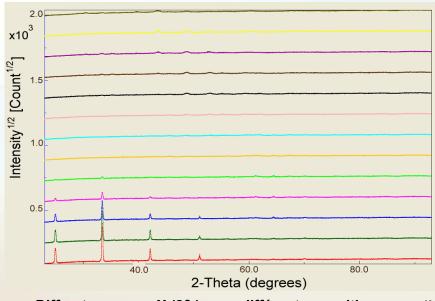
Travaux en cours et perspectives

- Élaboration des céramiques Ca₃Co₄O₉
 - > Optimisation des cycles thermomécaniques HP et SPS
 - Empilement des échantillons HP
- Caractérisations mécaniques et thermoélectriques
 - Compléter la caractérisation mécanique
 - Mesurer le cœfficient de Seebeck, S_c,
 - Conductivité thermique, κ
 - > Déterminer la figure de mérite, ZT
- Comportement thermomécanique et électrique des modules TE



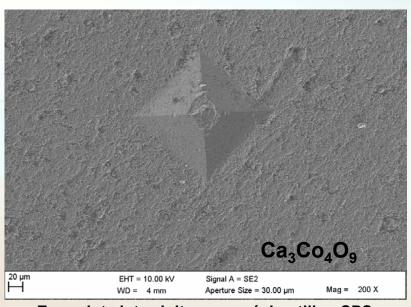
Thèse de Sébastien Lemonnier (en cours au laboratoire CRISMAT)

Merci de votre attention!

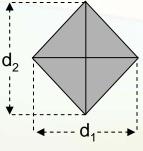

$[Ca_2CoO_3]^{RS}[CoO_2]_{b1/b2}$

$$\begin{array}{c} \text{CoO}_2 = \text{S}_2 \text{ (type CdI}_2) \\ \text{Responsable de la conduction} \end{array} \begin{array}{c} S1: a1 = 4,838 \\ 61 = 4,557 \end{array}$$

$$\begin{array}{c} \text{CaO} \\ \text{CaO} \\ \text{CoO} \\ \text{Ca}_2\text{CoO}_3 = \text{S}_1 \\ \text{(type NaCl = RS)} \end{array} \begin{array}{c} S2: a2 = a1 \\ 62 = 2,819, \\ c2 = c1 \end{array}$$

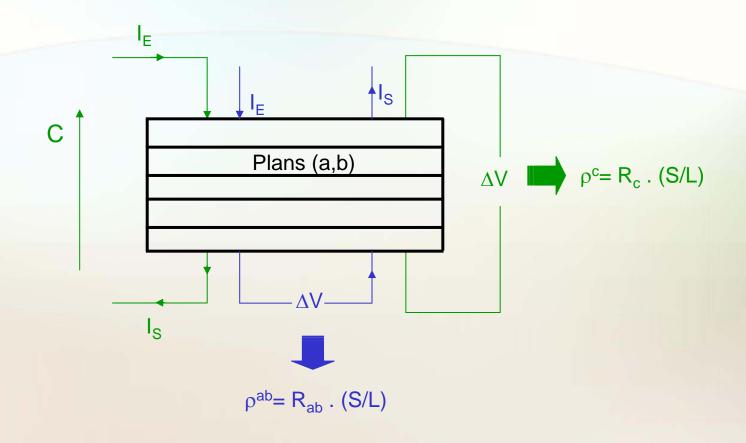

A.C. Masset et al., Phys. Rev. B, 62-2000

Echantillon HP



- ✓ Décroissance importante de la hauteur des pics 00l avec l'angle d'inclinaison.
- → Indication d'une forte texture

Diffractogramme X (20) pour différentes positions en χ (0 à 20)


Empreinte introduite sur un échantillon SPS

Empreinte Vickers

$$mH_v = 1,854P/(d_1.d_2)$$

Méthode de Montgomery (H.C. Montgomery-[1971])

