

Influence des conditions d'électrodéposition pulsée sur la nucléation, la morphologie et les propriétés de films de tellurures de bismuth

<u>C. Boulanger</u>, V.Richoux, S. Diliberto, N. Stein

GDR Thermoélectricité

Juillet 2008

Elaboration

Juillet 2008

Elaboration

Juillet 2008

Electroplating

* Definition of protocols

n-type SC

Binaries Bi_{2-x}Te_{3+x} Journal of Materials Chemistry, 6, 5, 1996 P. Magri et al Journal of Crystal Growth, 277, 2005, S. Michel et al. Journal of The Electrochemical Society, 152, 10, 2005 A. Zimmer et al Journal of Crystal Growth 296, 2006, S. Michel et al Electrochimica Acta, volume 52, 14, 2007, A. Zimmer et al

p-type SC

 $p-Bi_{0.5}Sb_{1.5}Te_3$

Electrochimica Acta 52, 2007 V. Richoux et al

Ternaries

Journal of Appl Electrochem, 33, 1, 2003 S. Michel et al. Thin Solid Films, 483, 2004, D Del Frari et al Journal of Solid State Electrochem. , 2007 S. Michel et al. Journal of Applied Electrochemistry, 36, 4, 2006 Del Frari et al

Juillet 2008

Juillet 2008

Pulsed electrodeposition

- Technique used in order to:
- improve the morphology of electroplated films
- modify the nucleation, grain size

Juillet 2008

Experimental conditions

- <u>Electrolyte</u>: $HNO_3 1M$, [Te] = 2.10⁻²M, Bi/Te = 1, 2 or 3
- •<u>Substrates</u>: Stainless steel or gold plates
- •Electrochemistry:
 - •Voltamperometric and chronopotentiometry studies

•Characterizations:

- EPMA, XFS (composition)
- XRD (cristallography)
- SEM (morphology)
- Hall effect, Van der Pauw (transport properties)
- Seebeck effect

				-					
	1		1	1			- 1		
			- 1						
			- 1						
				1					

Aim : a morphology with small grains and dense layers

optimization of the deposit conditions

theoretical models of nucleation

<u>Instantaneous nucleation :</u> immediate activation of all reaction sites and constant number of nuclei <u>Progressive nucleation :</u> increase of nuclei number during the growth process

$$\ln\left(\frac{i}{t}\right) = a - bt^{2}$$

$$\ln\left(\frac{i}{t^{2}}\right) = c - dt^{3}$$

$$\frac{1.9542}{t/t_{\text{max}}} \left(1 - \exp\left[-1.2564\left(\frac{t}{t_{\text{max}}}\right)\right]\right)^{2}$$

$$\left(\frac{i}{\text{imax}}\right)^{2} = \frac{1.2254}{t/t_{\text{max}}} \left(1 - \exp\left[-2.3367\left(\frac{t}{t_{\text{max}}}\right)^{2}\right)\right)^{2}$$

Juillet 2008

From the values of i_{max} and t_{max}

$$N_{0} = 0.0652 \frac{1}{(8\pi C M/\rho)^{1/2}} \frac{(zFC)^{2}}{i_{max}^{2} t_{max}^{2}}$$

Juillet 2008

Chronopotentiometric study

GDR Thermoélectricité

Chronopotentiometric study

Juillet 2008

Relations between pulsed parameters

- Litterature: empirical relation : $J_m < J_{\text{limit in direct mode}}$ J.C. Puippe, F. Leaman, American Electroplaters and surface Finished Society, 1986 -3 mA.cm⁻² < $J_{\text{lim direct}} < -4$ mA.cm⁻² in the case of Bi_2Te_3
- Definition of a medium current density: J_m

Influence of t_c on growth and morphology

 $J_c = -20 \text{ mA.cm}^{-2} \text{ et } t_{off} = 1 \text{ s}, [\text{Te}] = 2.10^{-2} \text{ M}, \text{ Bi/Te} = 1$

Agregates : 900 nm Coverage : 75% Bi_{1.9}Te_{3.1} Decrease of t_c

Agregates : 650 nm Coverage : 87% Bi_{1.53}Te_{3.47}

- better coverage
- smaller agregates
- increase of Te content

Small t_c = best morphology but necessary improvement of stoichiometry

Juillet 2008

Effect of J_c on growth and morphology

 $t_c = 10 \text{ ms and } t_{off} = 1s$, [Te] = 2.10⁻²M, Bi/Te = 1

J _c /mA.cm ⁻²	Coverage percentage	agregate size	stoichiometry
-20	62%	600 nm	Bi _{1.79} Te _{3.21}
-60	65%	450 nm	Bi _{1.82} Te _{3.18}
-100	82%	350 nm	Bi _{1.89} Te _{3.11}

Increase of J_c • smaller agregates • decrease of Te content High current density = optimal J_c

Juillet 2008

$$[Te] = 2.10^{-2}M$$
, Bi/Te = 1, 2 or 3

Pulse parameters	Bi/Te = 1	Bi/Te = 2	Bi/Te = 3
t _{on} = 10ms J _c = -60mA.cm ⁻²	Bi _{1.82} Te _{3.18}	Bi _{1.91} Te _{3.09}	Bi _{1.90} Te _{3.10}
t _{on} = 10ms J _c = -100mA.cm ⁻²	Bi _{1.89} Te _{3.11}	Bi _{1.99} Te _{3.01}	Bi _{2.08} Te _{2.92}

Increase of Bi/Te ratio

Decrease of Te %

Juillet 2008

Compositions obtained with [Bi]/[Te] = 2

 $t_{off} = 1s$, [Te^{IV}] = 2.10⁻²M, [Bi]/[Te] = 2, HNO₃ 1M

Juillet 2008 GDR Thermoélectricité

Comparison between methods: roughness

Juillet 2008

Seebeck coefficient and resistivity

Juillet 2008

Comparison between methods: physical properties

Annealing : T=150 °C - t =15 h and T = 300 °C - t=3 h

Juillet 2008

Comparison between methods: physical properties

Pulsed electroplating

Direct electroplating

	Binary (Bi _{1.9} Te _{3.1})	Antimony ternary (Bi _{0.5} Sb _{1.5} Te _{3.0})
Seebeck coefficient	- <mark>65</mark>	<mark>108</mark>
(µV/K)	-124	190
Resistivity	<mark>12</mark>	<mark>9</mark>
(μΩ.m)	97	545
Power factor	<mark>356</mark>	1350
(µW/K².m)	159	66

Juillet 2008

Conclusion

- Pulse Electroplating of Bi₂Te₃
- Instantaneous 3D nucleation
- Best parameters :
 - small $t_c \approx 10 \text{ ms}$)
 - high $J_c \approx -100 \text{ mA.cm}^{-2}$
 - †_{off} (1s)
- Improvement of morphology and roughness
- Promising Seebeck coefficient and power factor/ternary

Juillet 2008