

la recherche, ressource fondamentale research - a fundamental resource

SBT | SCIB | SPINTEC | SPRAM | SPSMS | SP2M

inac.cea.fr

OF LA RECHERCHE À L'INDUSTR

GRENOBLE

Thermoelectricity across a topological transition in YbRh₂Si₂, CeRu₂Si₂ (CeRh₂Si₂)

A. Pourret, A. Palacio Morales, M. Boukahil, G. Knebel, D. Aoki, Y. Onuki, J. Flouquet

RÉVINION DU GDR THERMOÉLECTRICITÉ 9-10 DÉCEMBRE 2013, NANCY

spsms

Outline

 Motivation: Well known Lifshitz transition in YbRh2Si2

- Experimental setup
- TEP results for transverse and longitudinal configuration (B//c) in CeRu₂Si₂
- Quantum Oscillations in the TEP CeRu₂Si₂ (CeRh₂Si₂)
- Conclusion

Motivation: YbRh₂Si₂

TEP across a Lifshitz transition

Rourke et al. PRL 2008

The system CeRu₂Si₂

Heavy fermion system

Kondo interaction T_{K} ~ 20K

Paramagnetic ground state

Metamagnetic transition at B=7.8T

Tetragonal cristal structure

Critical end point below T=0K

Weickert et al. PRB 81,134438 (2010)

MMT transition in CeRu₂Si₂

Lifshitz transition

CeRu₂Si₂: old idea the metamagnetic transition is accompagned by an abrupt localization of the f electron ?

but

- the MMT transition is more a cross over
- above Hm, both magnetization $(0.7\mu_B)$ and specific heat (500mJ/K/mol) depart drastically from a local moment scenario
- X ray absorption spectroscopy indicates that a fully localized state is expected only at H~200T
- « large » versus « small » FS maybe not pertinent in spin polarized sytems

→ New interpretation:

FS volume conserving topology driven transition CeRu₂Si₂ remains a Fermi liquid at all field Zeeman splitting scenario ($\mu_B B=E_F$)

Lifshitz transition

В

spin split FS undergoes a Lifshitz transition:

- majority spin branch disappears at H₀
- no localization of f electron
- "large" FS to "small "FS

K. Miyake, JPSJ, 75, 033704, 2006

Thermoelectric coefficients

1) Thermoelectric power $S = \frac{-E_x}{\nabla T}$ $S = -\frac{\pi^2 k_B^2 T}{3e} \left(\frac{\partial \ln \sigma(\epsilon)}{\partial \epsilon}\right)$ $S = -\frac{\pi^2 k_B^2 T}{3e} \left(\frac{\partial \ln \tau(\epsilon)}{\partial \epsilon} + \frac{\partial \ln N(\epsilon)}{\partial \epsilon} \right)$

multiband system :

$$S = \sum_i \frac{\sigma_i}{\sigma} S_i$$

Miyake, Kohno 2004

free electron gas $S = -\frac{\pi^2}{3} \frac{k_B^2}{e} \frac{T}{\epsilon_F} \left(\frac{3}{2} + \zeta\right)$ $\tau = \epsilon^{\zeta}$ $\zeta = 0$

The universal ratio is inversely proportional to the numbers of heat carriers :

The Seebeck coefficient can probe: any Fermi Surface hange, reconstruction; arrier sign ; effective mass (Quantum oscillations)

 $q = \frac{S}{T} \frac{N_{Av}e}{N}$ Behnia 2004

Width 0.5mm, length 4mm

Thermoeletric set up

Vacuum setup

Pressure setup

« One heater-two thermometers »

« Thermocouples »

Iemperature dependence for the transverse configuration

0T: change of sign at 300 mK

S/T at 0T continues to increase at low temperature S/T at 16T is constant

Temperature dependence for the longitudinal configuration

Metamagnetic transition: transverse configuration

Phase diagramm

Quantum oscillations

Quantum oscillations below and above the metamagnetic transition even inside the transition

e [001] 2.191.98 $\kappa[001]$ 1.591.70

a [001]

b [001]

c [100]

0.59

0.98

4.45

4.41

M Suzuki and H Harima

Quantum oscillations

Aoki H. et al. Phys. Rev. Lett. (1993)

Longitudinal configuration

Quantum oscillations

Aoki H. et al. Phys. Rev. Lett. (1993)

CeRh₂Si₂

FIG. 4.1 – Structure magnétique de CeRh₂Si₂ entre T_{N1} et T_{N2} (gauche)

CeRh₂Si₂

Frequency Spectrum of Thermopower Quantum Oscillations: Transversal Configuration

Conclusion

Thermopower favours a Lifshitz scenario for metamagnetic transition in CeRu₂Si₂

Thermopower shows additional peak at 13.5T.

Probably additionnal anomalies inside the metamagnetic transition: Lifshitz transition induces cascade of transitions like in YbRh₂Si₂

Thermopower shows quantum oscillations in good agreement with dHVA experiment (CeRh₂Si₂, CeRu₂Si₂)

New approach of FS change under pressure

Grenoble, SCES 2014, July 7 - 11

BIENVENUE A GRENOBLE 2014

Tentation

Unconventional metallic state in YbRh₂Si₂

 Yb based heavy fermion system with very low magnetic order

$$T_{K} = 25 \text{ K}, T_{N} \sim 70 \text{mK}$$

 $\Delta_{CF} = 200, 290, 500 \text{ K}$

m~ 0.02 μ_B

field induced QCP
local criticality
ESR signal of Yb³⁺
above H strong FM fluct

above H_c, strong FM fluctuations
Ishida et al, PRL 89, 107202 (2002)
Gegenwart et al. PRL 94, 076402 (2005)

Trovarelli et al. PRL 85, 626 (2000) Gegenwart et al. PRL 89, 056402 (2002) Custers et al. nature 2003

High field properties : T_K ~ T_{zeeman}

Interpretation 2006: destruction of the Kondo effect

Tokiwa PRL 2005