V₂O₃ Mott transition visited by TEP under pressure

GDR thermoélectricité: Sascha Populoh P. Wzietek, P. Auban-Senzier, C. Pasquier

Laborataire de Physique des Solides, UNIVERSITE PARIS XI

Part of my Ph.D. thesis: Investigation of the Mott transition in chromium doped V_2O_3 by means of ultrasound and thermopower experiments

Nancy, 08.07.2009

The Mott transition: what is a Mott transition?

- First description by N. F. Mott
- Transition between metallic and insulating phase, localisation of charge carriers due to electron-electron interaction
- No symmetry breaking
- First order transition, e.g. induced by external pressure
- Above the critical point continuous crossover

U/W

singular quantities:
probability of double
site occupation →
-density of states,
resistivity etc.

The sample system V₂O₃: phase diagram

Experimental set-up

Set-up in the in pressure cell

pressure: p ≤ 7 kbar

temperature: $300 \text{ K} \leq \text{T} \leq 500 \text{ K}$

Temperature dependent experiments in the insulating state

 \rightarrow Activation energy: $\Delta \approx 200 \text{ meV}$

Photo emission experiment: $\Delta \approx 120$ meV same order of magnitude (Mo et al., PRB, 2006)

5

Temperature dependent experiments in the metallic state

Experiments in the transition region

1. Transition temperatures at fixed pressures.

2. Disappearance of discontinuity and hysteresis: $T_c = 460 \pm 2 \text{ K}$

- 1. Transition pressures at fixed temperatures
- 2. Disappearance of hysteresis:
- $p_{c} = 3300 \pm 5 \text{ bar}$

3. Above T_c : second crossover line from inflection points

- Critical point : $(460 \pm 2 \text{ K}, 3300 \pm 5 \text{ bar})$
- several transition temperatures and pressures below critical point
- two crossover lines above the critical point

How to interpret thermopower data?

 $S = \frac{K_1}{T V}$

Relaxation time approximation :

where
$$K_n = -\frac{1}{3} \int 2\tau_k v_k v_k \left(-\frac{\partial f_0}{\partial \epsilon}\right)|_{\epsilon=\mu} \left(\epsilon(k) - \mu\right)^n d^3k$$

Definition electrical conductivity with transport coefficients: $\sigma = e^2 K_0$ $\longrightarrow \rho \propto K_0^{-1}$

Relation of our data for S to resistivity gives information about transport coefficient K₁: $K_1 \propto \frac{ST}{R}$

 K_1 sensitive to particle hole symmetry, perfect symmetry: $K_1 = 0$

Estimation of K_1 yields information about the quasiparticle peak that is responsible for the conduction

Comparison to data from resistivity measurements

<u>Qualitative explanation</u>: increasing pressure approaches metallic phase \rightarrow quasi-particle peak becomes well defined \rightarrow asymmetries less averaged out \rightarrow increase of K_1

<u>Interpretation</u>: change in K_1 smaller than the one of the conductivity

\rightarrow evolution of the particle hole symmetry plays no crucial role in the transition

Scaling with the scaling laws of resistivity

Near the transition good agreement with the mean field exponents $\gamma=1$, $\beta=0.5$, and $\delta=3$ - assumptions are correct 11

- critical behaviour of S is governed by σ

- Conclusion
 - Thermopower experiment: adapted for high temperatures and variable pressure cell
 - Observation of the MIT by TEP
 - Scaling with mean field exponents

- Further work
 - More realistic band structure calculations needed for theoretical understanding of the data (LDA+DMFT) of the thermopower experiment

- HP group at the LPS: Pawel Wzietek, Claude Pasquier, Pascale Auban-Senzier, Ning Kang
- Luca di Medici, Marcelo Rozenberg
- European Commission for the Marie Curie Fellowship

Thank you for your attention!

Crystal structure of V2O3

Band structure

Comparison to resistivity in dT experiments

- Metallic phase: quasi-particle peak is well defined, stays unchanged until 390 K
- Approaching the insulating or the crossover region: quasiparticle peak starts to broaden, asymmetries are more and more averaged out $\rightarrow K_1$ becomes smaller

ZT ≈ 3-4 x10⁻³ (at 400 K and 5000 bar, in the metallic phase)